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THE ONSET AND END OF THE GUNN EFFECT IN EXTRINSIC
SEMICONDUCTORS*

LUIS L. BONILLA? AND FRANCISCO J. HIGUERA}

Abstract. A Hopf bifurcation analysis of the spontaneous current oscillation in direct current
(DC) voltage-biased extrinsic semiconductors is given for the classical model of the Gunn effect
in n-GaAs. For semiconductor lengths L larger than a certain minimal value, the steady state is
linearly unstable for voltages in an interval (¢a,¢w). As L increases, the branch of time-periodic
solutions bifurcating at simple eigenvalues when ¢ = ¢, turns from subcritical to supercritical
and then back to subcritical again. For very long semiconductors a quasi continuum of oscillatory
modes bifurcates from the steady state at the onset of the instability. The bifurcating branch is
then described by a scalar reaction-diffusion equation with cubic nonlinearity subject to antiperiodic
boundary conditions on a subinterval of [0, L]. For the electron velocity curve we have considered, the
bifurcation is subcritical, which may agree with experimental observations in n-GaAs. An extension
of our calculation suggests that a supercritical time-periodic bifurcating branch (possible for other
electron velocity curves) consists of the generation at z = 0 and evolution of waves that are damped
before they can reach the receiving contact. Our calculation is a first step in determining how the
bifurcating solution branch is related to the branch of oscillatory solutions mediated by solitary wave
dynamics. The relation to previous numerical and experimental results is discussed.

Key words. Gunn effect, semiconductor instabilities, Hopf bifurcation, multiscale methods
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1. Introduction. Semiconductors in which spontaneous bulk current instabili-
ties occur have been shown to exhibit a wide range of temporal oscillatory and chaotic
behavior under suitable bias conditions, including period doubling and frequency lock-
ing routes to chaos in Ge [46], GaAs [1], and InSb [41]. These phenomena are observed
by measuring the current in the external circuit connected to the semiconductor and
the electric field (or the electric potential) inside the semiconductor. Often [22], they
are caused by the dynamics of one-dimensional nonlinear waves of electric charge in-
side the semiconductor and their interaction with the ohmic contacts at its boundary.
The simplest case seems to be that of the Gunn instability [19], a periodic oscillation
of the current through a purely resistive external circuit under direct current (DC)
voltage bias. The oscillations are caused by the periodic generation of charge domains
(solitary waves) at one contact, their uniform motion inside the semiconductor, and
their annihilation at the other contact [2], [22], [21], [42]-[44].

Although the physics of the Gunn instability in, say, n-GaAs has been well un-
derstood for years [42]-[44], the mathematical understanding of the phenomenon is
not complete. In previous publications we have tried to fill this gap [2], [22], [6],
[8]. A reasonable model for the dynamics of the electric field and the electric cur-
rent in n-GaAs is a nonlinear parabolic equation (with small diffusivity) coupled to
an integral conservation law (the DC voltage bias) [11], [31], [42]. These equations
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oF . E oF O?E -
1.1 s —= = n s A< | — A~o — Ytot
(1.1) € 57 +,uERv(ER> [an—l-e 8m] gD EFD Jtot
l./ ~ -~ ~
(1.2) E(z,t)dz = ¢.
0

Here the unknowns are E(Z, 1), the electric field inside the semiconductor, and Ji (),
the total electric current (essentially the same current measured on the external
circuit). That Ji:(f) does not depend on the distance # is a feature of the one-
dimensional geometry: (1.1) is obtained by integrating once with respect to # the
continuity equation for the charge density [2], [22] in a unipolar drift-diffusion model
[36]. (1.1) is Ampere’s law that establishes that the sum of the displacement cur-
rent, €5 (9E /0%, and the electron flux at a point of the semiconductor, yE rV(E)(gfip +
esaE/ax) — qD62E/8:c is equal to the total current, Jtot( t). €, q, p, and Fpg
are the permittivity, electron charge, mobility, and a reference electric field, respec-
tively. The electron flux is the sum of drift and diffusion terms, which are, respectively,
quERv(E/ER)7 and — —qDOf /0%, where the electron density is i = fip+(e,/q) OE /0%
by Poisson’s law. (7p is the constant concentration of donor impurities. ) Equation
(1.2) is the DC voltage bias condition that establishes the total voltage across the
semiconductor to be ¢. (We are ignoring the contact built-in potential and the re-
sistance on the external circuit, whose effects can be incorporated straightforwardly
in our considerations.) While more complicated models also display Gunn oscilla-
tions [12] [37], the present model is generally agreed to be sufficient to account for
the experimental observations in semiconductors longer than 1 um [42], [44]. It is
convenient to work with dimensionless versions of equations (1.1) and (1.2) [2], [22]:

OF OF 0’E
(1.3) 5 (B <1+%> 655 =J  t>0,0<z<IL,
L
(1.4) / E(z,t)dz = ¢.
0

Here E = E/ER, z = ana:/(esER) t = quiipt/es, J = Jiot/(quipER), ¢ =
qhipg/es, and § = qDiip/(espE%). Equations (1.3) and (1.4) are to be solved with
convenient boundary and initial conditions:

(1.5) E+p(%—]>=0 at x=0,L; t>0,
(1.6) E(z,0)= f(z) >0, 0<z< L.

Equation (1.5) is Ohm’s law for the metal-semiconductor contacts: the field at the
contact is proportional to the electron current (equal to J(t) — OE /0t according to
(1.3)). The proportionality constant is the dimensionless contact resistivity, p > 0,
which we have assumed to be the same for both contacts at z = 0, L. (Unequal
contact resistivities produce only obvious changes in our results.) The idea of using a
boundary condition at the contacts that locally relates the electron current with the
field is from Kroemer [32]. Contact current density—electric field relationships more
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general than the linear law (1.5) have been used by Grubin [17]. Equations (1.3)-
(1.6) together with a v(E) curve that grows at most linearly as F — oo constitute a
mathematically well-posed problem: there is a unique classical solution which depends
smoothly on the initial data and parameters [34].

The peculiar physics of n-GaAs introduces the requirement that the velocity curve
have negative slope (negative differential mobility, NDM) for fields on a certain interval
(Ewm, Em); see Fig. 1. This fact is one of the crucial conditions for the instability
of steady states which causes the Gunn effect [40]. (The other crucial conditions
are the voltage bias (1.4) and the boundary conditions (1.5) [42].) A convenient
phenomenological expression for v(E) is

1+ BE*

(1.7) v(E) = o

E, 0<Bxk1,

which was introduced by Kroemer in dimensional form [31]. B is the ratio between
the electron mobilities at the principal and satellite valleys of the conduction band of
the semiconductor.

The dimensionless diffusivity § > 0 turns out to be very small [2], and the dimen-
sionless sample length L ranges from 2 to 450 (which corresponds to lengths from 10
to 200 pm for GaAs with an impurity concentration of 10!% cm=3 [2], [19], [44]. Thus
the limit 6 — 0, L — oo describes the experimental situation in long semiconductors
and has been exploited to construct asymptotic solutions of the problem (1.3)—(1.7)
[2], [6], [22], [8]. Most of the essential features of the asymptotic (stationary and
time-dependent) solutions are already present in the outer problem § = 0 (with ap-
propriate shock conditions [29]). This applies to the asymptotic description of the
time-periodic Gunn oscillations (including creation of waves at the injecting contact,
motion toward z = L, annihilation there, and recycling [22]) and to the onset and
end of the Gunn instability as we will explain here (see also [8]). Szmolyan [45] (see
also [36, §4.8]) has also studied the system of equations (1.3)—(1.4) with a different
scaling and with different boundary conditions. In particular the stage of one period

VMV.(.E.) Esz
Jo ) —
v j
vm = fem - - =TT .
: ! :
' L N N . Rt E
EIEM Eg Em E3

F1G. 1. Electron velocity versus electric field (1.7) with B = 0.02. vpr = v(Ens), vm = v(Em).
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of the Gunn oscillations when a solitary wave is far from the contacts was analyzed
on the basis of the Butcher integral representation of the Gunn domain [11], [29]. An
asymptotic description of the processes of wave annihilation at the receiving contact
and of wave creation at the injecting contact was not provided.

In the limit 6 — 0 we can resort to matched asymptotic expansions to under-
stand the Gunn effect. The positive sign of the convective term in (1.3) implies that
disturbances propagate from left to right. This in turn indicates that a boundary
layer appears at the receiving contact = L [6], [22], [8]. Setting § = 0 in (1.3) and
ignoring the boundary condition at z = L, we obtain the reduced outer equation

OF OF
1. —_— — | =
(1.8) 5 +U(E)[l+6x] J, t>0, 0<z<L,
to be solved together with (1.4) and appropriate initial data (1.6) and the boundary
condition

8E(0,t)

En —J(t)) =0, t>0,

(1.9) E(O,t)-l—p(
Notice that the outer problem is only seemingly hyperbolic: a localized disturbance of
the field at a certain point immediately influences F(z, t) at any other points z € (0, L)
via the integral constraint (1.4).

Near z = L, we must insert a diffusive quasi-stationary boundary layer [2], [6]
(see the discussion in [8]), with E = E;,(z,t):

OE; 0?E;
(1.11) Ein(L,t) = E.(t) with 4 + B _ J,
dt p
(1.12) Ein(z,t) ~ E(z,t) as (L—xz)> 6.

(1.11) is the boundary condition at = L, and (1.12) is the matching condition with
the solution of the outer problem, which we denote by E(z,t) as in (1.8). The solution
of (1.10)—(1.12) is

OEin _ ‘ _z—1L
(113) 85 _Q(E’LnyE)7 f: (5 )
E.n
(1.14) Q(Em, E) = / v(s)ds,
E
Enm(&t) 4
(115) <= /Ec(t) Q(s,E)’

Some insight on the nature of the problem (1.3)—(1.6) is obtained by relating it to
a mathematically simpler problem [2], [6]. In fact, we may consider two mathematical
problems associated to eq. (1.3), each corresponding to a realizable physical situation:
1. The direct problem, corresponding physically to current bias conditions, con-
sists of solving (1.3), (1.5), and (1.6) for a known, fixed J(t). Once E is

known, the voltage can be determined by using (1.4).
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2. The inverse problem, corresponding physically to voltage bias conditions,
consists of solving (1.3), (1.5), and (1.6) for an unknown J(¢) selected so
that (1.4) holds. We call this the inverse problem since the “equation” (1.3)
contains an unknown term, J(t), whose determination is part of the problem.

The direct problem was considered in [2], [6], where its steady states were con-
structed and their linear stability was discussed with the help of a general theorem
proved in [7]. The knowledge of the direct problem may help to solve the inverse
problem. For example, we discussed the shape of the current-voltage characteris-
tic diagram for the stationary solutions of the inverse problem on the basis of our
knowledge of the direct problem, [2], [6], [22]. The linear stability properties of the
stationary solutions of direct and inverse problems are related through the princi-
ple of the argument applied to the differential impedance (see the discussion in [6]).
However, this relation is usually not a simple one-to-one correspondence between the
critical voltage (above which the stationary solution of the inverse problem is linearly
unstable) and the critical current (above which the stationary solution of the direct
problem is linearly unstable) [6]. As a consequence, it is often more practical to con-
sider directly the inverse problem as a problem for two unknowns E(z,t) and J(t)
which have equal status, and this was the point of view adopted in [8]. There we stud-
ied the stability of the steady state of the voltage bias problem directly; we showed
that it is linearly stable for ¢ outside a voltage interval (¢n, @.,) (for L large enough).
When ¢ is slightly larger than ¢, or smaller than ¢,, a quasi continuum of oscillatory
modes becomes unstable in the limit § — 0, L — oo, and explicit expressions for the
corresponding frequencies of the modes, for ¢,, ¢., and for the dispersion relation
can be found [8].

In this paper we analyze the Hopf bifurcations at ¢, and ¢, in the limit § — 0
for contact resistivities p € (Ea/vam, Em/vm). The latter restriction implies that the
field near the injecting contact x = 0 at the steady state decreases with = for low
voltages. This gives rise to a potential drop, which is reasonable to expect in view
of the built-in potential induced by a metal-semiconductor contact [44]. Besides, it
is known that the Gunn effect is then mediated by solitary wave dynamics [22]. For
smaller p, the Gunn effect is mediated by monopole wavefronts [22] (not observed
experimentally), while for p > E,, /v, the present model is probably unrealistic and
has not been studied. We find amplitude equations both for L = O(1) and for L > 1.
A physical interpretation of the results in the later limit allows us to understand the
numerical and experimental results known for years [19], [42], [11], showing periodic
recycling of solitary waves that disappear before reaching the receiving contact. We
also give plausible scenarios where the experimentally observed intermittency [23], [24]
could be understood within the context of our model or of related ones [10], [3], [4].

The rest of this paper is organized as follows. In §2 we revise the construction of
the stationary states of (1.3)—(1.5) in the outer limit § — 0 and their stability under
DC voltage bias [8]. More explicit results are found in the limit L — oo, § = o(1/L),
including the dispersion relation for the quasi continuum of unstable oscillatory eigen-
values [8]. In §3 we derive the key nonresonance condition that ensures the absence
of secular terms in our perturbation expansions of later sections. Section 4 contains
a multiscale calculation of the Hopf bifurcation for the Gunn effect at finite length,
L = O(1), which is one of the main results in this paper. The corresponding study
for L > 1 is made in §5. We derive an amplitude equation for the oscillatory part of
the current and interpret its relevant solutions in terms of waves of the electric field
that die before reaching x = L. Section 6 contains a discussion of our results and an
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attempt to understand the possible bifurcation diagrams of the Gunn instability. We
also indicate how our results may help interpreting relevant experiments and point
out several open problems. The appendices are devoted to several technical matters.

2. Steady states and their linear stability. This topic has already been con-
sidered in a number of publications [8], [6], [2]. We recall several results of [8] for
resistivities p € (En/vay Em/Vm).

When E and J are time independent, eqs. (1.8) and (1.9) become

OE _ J—u(E)
(2.1) Bz T(E—)——’
(2.2) E0)=pJ.

Let E(z;J) denote the solution of (2.1)—(2.2) corresponding to a given positive
J. The current J is then determined as a function of the applied voltage ¢ by the
equation

L
(2.3) B(J) = /0 B(z;J) dz = 4,

which has a unique solution J for every positive ¢, [8]. The qualitative behavior of
E(z;J) and of ®(J) is seen by the analysis of the one-dimensional phase diagram of
(2.1). Tts fixed points satisfy J — v(E) = 0. When the curve v(FE) is as in Fig. 1
and vy, < J < vy, the function J — v(E) has three zeroes E;(J) < Eq(J) < E3(J).
Considering (2.1) as a one-dimensional dynamical system, the critical point F, is
unstable, while Ey and E3 are attractors with basins £ < E; and E > Fs, respectively.
The asymptotic value of E(z;J) as x increases (on long enough samples) is E1(J) or
E3(J), depending on whether the initial point (E, J) at = = 0 (which lies on the line
E(0) = pJ) is to the left or to the right of E(J), respectively. Of particular interest
is the value J = J, for which these two coincide:

(24) E2(Jc) = ch‘

This relation holds only for resistivities p € (Ens/var, Em/Vm), which we assume here
as explained in § 1.

Let us determine the dependence of the current J with the average field ¢/L for
the problem (2.1)—(2.3) in the limit L — oco. For 0 < J < J,, the field of the steady
state decreases from E(0;J) = pJ down toward its asymptotic value E;(J), whereas
for J > J., E(z;J) monotonically increases from E(0;J) = pJ to E3(J) for large z
(see Fig. 2). In the limit L — oo, the voltage ®(J) of (2.3) is then approximately
E(J)L for 0 < J < J., and E3(J) L for J > J.. We then have that

(2.5) J v (%)

both for 0 < ¢/L < E;(J.) and for E3(J.) < ¢/L approximately as L — oco. The
steady-state current therefore follows the curve v(E) outside a voltage interval such
that E,(J.) < ¢/L < E3(J.). Inside this interval, J ~ J,. The steady-state field
corresponding to such voltages is described in the following lemma, which was proved
in [8].

LEMMA 1. (a) Let E1(J.) < ¢/L < Ea(J.). Let us fix E(X;J) = Ey, where Ey
is any convenient fized number in the interval E1(J.) < Eg < Ea(J.). Then for each
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E(x)

(@) o.

(¢))

0 10 20 30 20 50 X
E(x)
70}
60}
50}
(b)
40
30}
20}

10}

5 10 15 20 X

F1G. 2. Steady state E(z; J) when: (a) E1(Jc) L < ¢ < Ea(Je)) L, J / Je (numerical values:
Je—J =5.01x107% p = 2) and (b) Ea(Je) L < ¢ < E3(Je)L, J \, Je (numerical values:
J—Jc=107%; p=2). We have chosen a large enough L and the narrow boundary layer at ¢ = L
has been omitted.

value of X € (0, L) such that {X,(L—X)} > 1, ¢ and J are uniquely determined by
the asymptotic formulae

¢=E1L+(E2—E1)X+<L;X+§> (] = )
(2.6) . L
o= Ba)ols) o [P (o= Buls)
*/& To—o(s) +/EO To—u(s) “roW
and

cr | vs | | vz | X
2.7 —Je~ - ~ .
27) J 1— pv) xp Je
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(2.8) E(z;J) ~ Ey—cp, exp{—vé(—xj_—)g} (as (z—X) - —)

Es A v}
(2.9) e = (B2 — Eo) exp {/E [s —1E2 - v(st)JQ— 7 ﬂ ds}

and
(2.10) E(z;J) ~ E1 —cp exp {—

with

Eo v vl
(211)  cr=(Eo— Ey)exp {_/E L _1E1 ~ U(s)l_ - 71} ds} :

In the right-hand sides of (2.8) and (2.10), vi, = v'(Ex(J)), k= 1,2. E(x;J) in these
equations refers to the field in the transition layer (x — X) = O(1): (z — X) - —o0
(resp., — +00) means leaving the transition layer toward the left (resp., right). Note
that ¢y, and cgr are both positive.

(b) Let Ex(J.) < ¢/L < E3(J.). Let us fix E(X;J) = Ey, where Eqy is a given
number in the interval Es(J.) < Eg < E3(J.). Then for each value of X € (0, L) such
that {X, (L —X)} > 1, ¢ and J are uniquely determined by the asymptotic formulae
(2.6)—(2.11), where E3(J) replaces E1(J) everywhere. Note that ¢ and cr are now
both negative.

To analyze the linear stability of the steady state, we study the evolution of a
small disturbance about the steady state

J(t) = J +e€j(t),
E(z,t) = E(z) + €é(z, t), 0<ex 1,

(2.12)

as t — +o0o. Inserting (2.12) into (1.8), (1.4), and (1.9) yields

(2.13) Lé—j=0.

(2.14) €(0,t) +p (@ —3(t)) =0, t>0,
L

(2.15) /0 é(z,t)dr = 0.

In (2.13), £ is the operator

(2.16) Lé= %f- %f-)—é—] +v/(E)e.

That considering a small nonzero diffusivity 0 < § < 1 does not modify our stability
results was shown in Appendix B of [8]. Equations (2.13)—(2.15) can be solved by
separation of variables:

(2.17) jt) = jeM, &z, t) = é(x; N) e
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Insertion of (2.17) into (2.13)—(2.15) yields

(2.18) a[ug) 4 W)+ e =],
_ Le(a; ) .

(2.19) Z(\) _/O == de =0,

(2.20) &(0;)) = 1J’:Jp/\

The zero of the impedance Z(\) with largest real part determines the linear
stability of the steady state. We have evaluated numerically the neutral stability
curve (corresponding to the zero with largest real part being pure imaginary) for the
steady state in the parameter space ¢/L vs L for different values of the resistivity p.
The results are shown in Fig. 3. The discontinuities in the slope of the curve in Fig. 3
are due to the crossing of different zeroes as L increases. Note that above a certain
L = L,,, there are two values of the voltage for each L, ¢, and ¢, such that the
steady state is linearly stable for ¢ outside (¢4, ¢,). At the voltages ¢, and ¢, we

o/L B =0.05
6 L

Stable

Unstable

0 2 4 6 8 10 12 14 16 18

F1G. 3. Neutral stability curve of the steady state for B = 0.05 and two values of p. The steady
state may be linearly unstable to the right of the minimal length L,,. Note that L., increases with
the resistivity of the injecting contact p. For each L > L, the steady state is linearly stable outside
a voltage interval (¢, Pw): Pa corresponds to the lower branch of the neutral stability curve and
¢w to the upper branch. The dotted lines indicate the value E1(J.) to which the lower branch of the
neutral stability curve tends as L — oo. The upper branch of the neutral stability curve tends to
E3(Jc) as L — oo, but a good approzimation to this asymptotic value occurs only for much larger
values of L than those represented in the figure.
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expect that time-periodic solutions bifurcate from the steady state. We shall calculate
these bifurcating branches of periodic solutions in §§3 and 4 for semiconductors of
finite length. In the limit L > 1 many modes become unstable almost simultaneously,
as we shall see below, and a different calculation of the bifurcating branches is needed;
see § 5.

Remark 1. Note that ¢, /L rapidly tends to a constant value E; (J.) as L increases.
This suggests that the results we will obtain next in the asymptotic limit L — co may
be of practical applicability even for moderate L near ¢ = ¢,,.

For long semiconductors the linear stability of the steady state can be ascertained
without resorting to numerical calculations, as was done in [8]. The main results are
contained in Lemma 2 below, which was also proven in [8].

LEMMA 2. Asymptotically as L — oo, the steady state is linearly unstable for
voltages ¢ € (pq, Pu), where

(a) do is given by (2.6) with X = X,

CL’U/%L }_ J
O

J
2.21 X~ In
(2.21) A {Jvi(l ) B0 " T

InL+0O(1).

For voltages slightly over ¢, ¢ = ¢o + 60,

1
(222) W < 6¢ <1 (as InL — OO),

X =X+ 60X (with 6X ~ 6¢/[2(Ey — E1)] > 0), many eigenvalues A = i, + a, +
twn, (O, wn) € Q, <K 1, become unstable, where

(2.23) O~ I 41,43, 45, O(XVEX),
1y 02
|vg | 6X  J(fa—5) %
(2.24) ap, X X )
Jfl Qn
Here the fx’s are
_ V] — vy
(226) fl =—p 'Ui vé d)la
v] — vl vy — v}
9. _ 1~V 1 =%
(227) f= (oo (p+ )+ b o gy
and
(2.28)
(—1)* + 9F(x;J) [z — X + E(z;J) — B2 \*
_ =1,2,....
= B —E) ).  ox J dz, k=12,

(b) ¢u is given by the formulae (2.6) and (2.21) with E3 replacing E,. With
this replacement, formulae (2.23)-(2.29) hold for voltages ¢ = ¢, — 6¢, X = X. +
60X (6X ~ é6¢/[2(E3 — E3)] > 0).
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Remark 2. The main elements of the proof of this lemma will be recalled in
Appendix A, as we shall need them to motivate our derivation of the amplitude
equation for long semiconductors in §5. Lemma 2 confirms that a steady state with
only a small fraction (L~!1In L) of its length in the NDM region of v(E) may become
unstable, as concluded by Grubin, Shaw, and Solomon [18] after a calculation with a
piecewise linear v(E) [42]. Steady states with a larger fraction of their length in the
NDM region of v(E), X > X,, are unstable. Lemma 2 shows that these criteria for
the onset of instability hold for general v(E) in long semiconductors. From (2.21)-
(2.23) and the formulas in Appendix A, we find that the eigenfunction corresponding
to the eigenvalue with zero real part obeys

é(x;i182y,) N L OF exp | —if) z— X+ E(z;J)— Es
- n 7

2.2
( 9) ] ’Ui (E2 — El) ox

on0<x< X, + Az and
é(x;1,) 1

2.30 ~
(2.30) J v) + 182,

on X,+Ax <z < L.

Here 1 <« Az < X, = O(InL), and X = X, + 6X such that ReA = 0, X\ ~ iQ,,.
Recalling the separation-of-variables ansatz, (2.17), we see that the disturbance of the
electric field, é(x,t) = é(x;iQ,) exp(ifd,t), represents a wave that travels with speed
J to the right while its amplitude grows exponentially with z (recall (2.8)).

Remark 3. Equation (2.24) is a dispersion relation between the rate of growth of
a given eigenvalue, 6.X, and the square of the imaginary part of the eigenvalue (the
frequency). This equation relates the Fourier coefficients of the terms in a diffusion
equation where the “spatial” variable corresponds to a slow time! scale x = tv/6X
and the “time” variable corresponds to a slower time scale 7 = (§X/X.)t. Then the
coefficient of —Q22 plays the role of an effective diffusivity, and it appears as such in the
nonlinear amplitude equation that we will derive in § 5. For values of the resistivity in
the interval p € (Ear/var, Em/vm), and typical values of B, the effective diffusivity is
always positive [8]. Consistency requires a,, < €2,,, which implies 2,, < X, = O(In L)
as stated in Lemma 2.

Note that, for fixed X, the separation betweeen the real parts of two consecutive
eigenvalues decays to zero faster than 1/(In L)?:

8m7T2J3(f2—f—l) 1 1
2.31 ]l — Qa1 ~ 2) _ ! Vet
(231 Gam = como X3 n((zp) < P
From the dispersion relation (2.24), and given (2.31), we find the number of modes
that become unstable when 6¢ is as in (2.22) (cf. (2.24) with ay = 0):

(2.32) N =0(\/é6¢ InL),

which was considered when we wrote the values taken by n in (2.23). For voltages
¢ = ¢po +6¢p or ¢ = ¢, — 6¢p, with 6¢ in the range (2.22), a quasi continuum of
eigenvalues with vanishing frequencies (2.23) crosses the imaginary axis. We shall
present the analysis of the resulting bifurcation in §5.

! There is an authentic spatial scale associated with X because the field disturbance is a wave
traveling with speed J on the interval 0 < z < X. + Az. See the interpretation of the amplitude
equation in §5.
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Remark 4. The asymptotic description of the large-amplitude oscillations of the
current due to solitary wave dynamics implies that these exist for ¢ > @erie ~ E1(J.) L
[22]. This conclusion was based upon the following: (a) the solitary wave leaves
E = FE;(J) behind once it has abandoned the neighborhood of z = 0 and reached
maturity; (b) the excess area near z = 0 due to the gradual decay of E(x;J) from pJ
to F1(J) is neglected; and (c) the mechanism for solitary wave creation comes to a
halt if ¢ is so small that the solitary wave disappears at x = L for J < J,.. Clearly,
it is hard to decide on this basis whether ¢, > ¢crit O do < Periz- In fact both
situations might be possible for different values of the resistivity p. Elucidation of
this point requires extensive numerical calculations which will not be attempted here.

3. Linear inhomogeneous problem and secular terms. We plan to per-
form a perturbation calculation of the oscillatory branch that bifurcates from the
steady state both for finite L and for L — oco. Then it is important to know under
what conditions the solution of the linear nonhomogeneous problem associated with
egs. (2.13)—(2.15) (at the critical voltage) is bounded and periodic in time. In other
words, we want to find the precise conditions under which no secular terms are present
in our calculation. In this section we consider the simpler case of finite L where only
two complex conjugate zeros of the impedance (2.19), A = +iw, cross the imaginary
axis at the critical voltage. The linear nonhomogeneous problem is

Lé—j = f(z)ev?,

0,0+ | 290 5| =get*

(3.1) /L é(z,t)dz = 0.
0

In (3.1), the operator £ is given by (2.16), and the coeflicients are calculated for
E = E(z; J), the steady state at the critical voltage. We now find the conditions that
ensure absence of secular terms. Insertion of the ansatz

(3.2) jt)y=jet,  é(z,t) = é(z) et

in (3.1) yields

O] | (i /(B = 5+ i),
oy PItY
é(0) = 1+ipw’
L
(3.3) / e dr =0
0

We now solve the first two equations and insert the solution in the third. The result
is that a sum of three terms is zero. The first term, proportional to j, is zero because
it is the solution of the homogeneous problem (3.1) with f =0 and g = 0. Then the
sum of the remaining terms must also be zero for a bounded periodic solution of the
type (3.2) to be possible: -

/OL v(éi”x» {ff’pﬁ P [_/0 Ej‘(fi)g)) d"’]

(3.4)
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If the left side of (3.4) is not zero, the solution of (3.1) has to be proportional
to te'“!, thereby yielding secular terms (unbounded as t — oo) in the perturbation
theory of which the linear problem (3.1) is part. We will call (3.4) the nonresonance
condition, and we will use it extensively in the bifurcation calculations that follow.

4. Hopf bifurcation. Let E = FE(x;¢) be the steady state corresponding to
a voltage ¢, and J = J(¢) the corresponding current. Let Fg(z) and J. be the
corresponding field and current at the critical voltage ¢. where the steady state ceases
to be linearly stable. (¢, is either ¢, or ¢, of §2.) We want to construct the
time-periodic solutions that bifurcate from E(z) at ¢ = ¢.. Let us define the small
parameter € as the deviation from the critical voltage ¢.:

(4.1) p=¢.+€p, ekl

(The sign of ¢ = £1 will be determined later.) Then the corresponding stationary
field and current are

E(x;¢) = Eo(z) + €2 ¢ Ex(x) + O(e?),

(4.2)
J=Jo+epJo+O(e*).

Clearly, Es(z) = OE(z; ¢c)/0p, Jo = dJ(Pc)/de. To calculate the bifurcating oscil-
latory solution, we shall assume the usual Hopf multiscale ansatz [30], [9]:

E(z,t;€) = Eg(z) + e EV (2,8, T) + E[E@ (2,1, T) + ¢Es(x)]

+ EE®) (z,t,T) + O(eh),

Jt;e) = Jo + e JD (@, T) + E[JD#,T) + oJo) + T (¢, T) + O(€*);

(4.3) t=t, T = €t

The slow time scale T' = €2t is chosen so as to eliminate the secular terms that first
appear in the equation for E(®) (see below). Inserting (4.3) into Equations (1.8), (1.9),
and (1.4) and equating like powers of €, we obtain the following hierarchy of equations
for the E(®)’s and J*)’s:

(44) LED — gb =,
(1)
L
(46) / E(l)(x,t,T) de — 0,
0
(47) L E(2) — J(Q) = _l ivl + 0" (E(l))2
‘ 2 |0z )
(2)

L
(4.9) / E®(z,t,T)dzx =0,
0
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L.E® — B = { 0 + (%v' Ey + 0" EQ)] EW

oT
(4.10) 5 i
I " W2 _ = 2 " (1)\3
{axv+v:|E E 6{83:1) +v](E )°,
OE®)(0,t,T) oEM
4.11 ®) T oL\ EL L) 50) __ o
@iy B0 +p | R ST < P
L
(4.12) / E®(z,t,T)dz =0
0

Here L. is the operator (2.16) evaluated at € = 0. The argument of the function v
and of its derivatives here and in what follows is thus E = Ey(-). Terms such as

[Z v + "] (EM)? mean %ﬁf)—)—z—] + 0" (EM)?, so that the operator [ v’ + v”]
acts on whatever function of x follows it.
The solution of Egs. (4.4)—(4.6) is

JV (@, T) = A(T)e'* " + cc,
(4.13) EW(2,t,T) = A(T) e“* (z) + cc,

where 1 (z) is the solution of egs. (2.18)—(2.20) corresponding to the eigenvalue A =
and cc means the complex conjugate of the preceding term. We now insert (4.13)
in (4.7) and solve the resulting linear nonhomogeneous equation with the boundary
condition (4.8). We find

JAOWT) =vy | AT) |> + v A(T)? e + c,

(4.14) E(Q)(:(;,t,T) =&o(z) | A(T) |2 +6(2) A(T)zei 21 | g
where
(4.15)

/ [] ()]

(1+6n0) fi & [ dy O (y, 2) [ 20/ +0"] [(y)> )]

4.16 Up=
(419 2 [y do[e2al0s) 4 (%O, (y,z)dy]
(4.17) O,(y,z) = exp[ — /z v’(%((;i)(:—))znw dz] )

where n is an integer (n = 0,2 in (4.15)—(4.16)). In (4.14), we have omitted terms
that decay exponentially to zero in the fast time scale t. 8,0 is the Kronecker delta,
equal to 1 for n = 0 and to zero otherwise.

To find the equations for the amplitude A(T'), we insert (4.13) and (4.14) in the
right side of (4.10). Then for the solution of this problem to be bounded and time
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periodic in the fast time scale ¢, we need to impose the nonresonance condition (3.4).
The result is the following amplitude equation for A(T):

dA

(4.18) TF=PMA-7A AP
with
1 Ld x 8
(419) )\1 = —5 /0 Tx /O dy @1(y,x) !"a—y ’Ul +’UH:I (’lﬁEg),
1 (Fdz [* o , 9 _
. 1= [T [ e {| 5o+ o + i
1 8 " " 2
+3 o+ v )
and
L dr p 2 T
(4.21) D:/O 7{[1:—@] v(pJ)el(O,a:)Jr/O dy@l(y,wW(y)}-

Note that A\; = %\s at ¢ = ¢. (Appendix B). Thus Re\; > 0 at the lower critical
voltage ¢, and ReA; < 0 at the upper critical voltage ¢,,.
Eq. (4.18) has the following periodic solution:

A(T) = Re*?#(T=T0) Tu — const.,

pRe);
R=,/——
V Revy ’

Im~yRe A

(422) M= Im )\1 — Re'y

We now show that the stability of the solution (4.22) depends on the sign of Rey
only. Let Rey > 0. Then the bifurcating solution is asymptotically stable (except
for the constant phase shift Tp). In fact, if ReA; > 0, the solution (4.22) exists for
¢ = 1 (therefore ¢ > ¢. = ¢,) and it is reached for large positive times starting
from any initial condition different from A = 0. If ReA; < 0, the solution (4.22)
exists for ¢ = —1 (therefore ¢ < ¢. = ¢,,), and it is again reached for large positive
times starting from any initial condition different from A = 0. Similarly, we can show
that the bifurcating solution is unstable when Rey < 0. This is the usual “principle
of exchange of stabilities” [30], [9] between the trivial stationary solution and the
bifurcating branch of oscillatory solutions: a supercritical solution (bifurcating toward
the side where the steady state is unstable) is stable, whereas a subcritical solution
(bifurcating toward the side where the steady state is stable) is unstable.

We have numerically evaluated the coefficient Rey for ¢ = ¢, and L near the
minimum length at p = 1.8 [28]. The result is that (i) Rey < 0 (subcritical bifurcation)
near L = L,,; (ii) for intermediate lengths, L € (Ly,L2), Rey > 0 (supercritical
bifurcation); (iii) whereas for L > Lo, again Rey < 0 (subcritical bifurcation, which
agrees with the asymptotic result for In L > 1 obtained in the next section). At L,
and Lo there are transitions from subcritical to supercritical and from supercritical
back to subcritical Hopf bifurcations. Discussions on the physical implications of these
results may be found in §6.
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5. Amplitude equation for In L > 1. For very long semiconductors, Lemma
2 of §2 indicates that many modes (2.32) become unstable shortly after the voltage
crosses its critical value, (2.22). A convenient representation of the electric field and
the current on the bifurcating oscillatory branch for In L > 1 is given by

E(z,t,T;€) — Eo(z) = € > An(T) "™ pn(z) + O(€?),
n odd

(5.1) J(t.Tie)—Jo=€ Y An(T) e
n odd

Here 9, (z) = é(z;i9,)/J as in Appendix A, with Q, given by (2.23). The sums are
over all odd integers, and they include both unstable modes with n of the order of
N given by (2.32), as well as linearly stable modes with larger n. Since the solutions
have to be real, A_,, = A, in (5.1) and in what follows. Equations (5.1) are obtained
by solving equations (4.4)—(4.5) for E() and J() with exclussion of linearly stable
modes corresponding to eigenvalues whose real part is O(1).

The linear parts of the amplitude equations for A, would determine their evo-
lution if all the A, were small. They follow straightforwardly from the dispersion
relation (2.24):

04y Wil , T —(f2/2) (anf A

2 =
(5 ) 8T 2Xc (E2 - El) " Xc GXC

where n = £1,43,...,0(eX.). This will be derived by means of the multiscale
method of §4 in Appendix C.

The nonlinear terms of the amplitude equation, missing in (5.2), couple different
A,’s and are essential when these are of order 1. They will be derived in Appendix
C, but their form can be advanced from the following considerations:

1. The nonlinear terms are cubic in the A,’s. The reason is the same as in §4:
resonant terms first appear in the equations for E®) that contain products
of three factors of the form (5.1).

2. The coefficient of each trinomial A,A4A, appearing in the amplitude equation
for A, is independent of (p, g, 7, n). This is a consequence of the limit In L —
00: Pn(x) ~ é(x;0)/7, as n = O(eX,), which implies Q, < 1. We show
in Appendix C that, as far as a determination of the leading order of the
nonlinear term in the amplitude equations goes, the integer n does not appear
in the right-hand sides of the equations for £(?) and E®). Then the nonlinear
term in the amplitude equation for A, has the form

(5.3) Yoo Y, ApAghAn_p g

p,q odd

3. The coefficient of the sum (5.3) is Yoo = (3X,) ™! limp— 00 (Xc7y), where v is
given by (4.20). (See Appendix C for an alternative direct derivation and an
explicit evaluation of .) This result follows from the complete amplitude
equation with initial condition A,(0) = A_,(0) = &,1. Clearly, 4; = A_; is
the only excited mode for T > 0, and its evolution should obey (4.18). The
factor 3 in 7., represents the different ways of obtaining A; |A;|? from the

sum in (5.3).
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Putting together (5.2) and (5.3), we obtain the leading-order approximation to
the amplitude equation in the limit In L — oo:

A7L
(5.4) X, %? = (ap— Q) Ay —TL* > Ay An Ay pm,
p,m odd
where the coefficients
| v5 |
0= ——21— >0,
2(E, — E1)
2
p=7(r-1)>0
/2
(5.5) = V2 ~ T <,

_12J’UI% (E2 —E1)2 2

are independent of n (cf. Appendix C for the derivation of the explicit expression of
T in (5.5)).
We can rewrite (5.4) as the following equation for

JO(t,T) €%t
(56) ’u'(X,T)“‘”L—’ X—Eta T_Z .

u 0%u 5
(5.7) E—ﬁa—x—i+(aap—f‘u)u,
(58) U(X + 2'(;'_61 T) = —’LL(X, T)'

The antiperiodicity condition (5.8) results from (5.1) and (2.21): note that (5.7) is a
reaction-diffusion equation where both “time” 7 and “space” x are slow time scales.
Our result I' < 0 indicates that ¢ = —1 and the bifurcation is subcritical. Then any
solution of (5.7)—(5.8) blows up in finite “time” 7. This means that our perturbation
scheme breaks down, and presumably strong derivatives or discontinuities in the cur-
rent (and consequently in the field) are created. These may then evolve into solitary
waves with a back shock or into traveling monopole fronts like those discussed in [22].

Had a result T' > 0 been found, a different situation would have occurred. In
this case ¢ = 1 and the stable supercritical solution of (5.7)—(5.8) would have been a
r-independent steady state of large period 2€ X./J > 1. In the phase plane (u, g}%)
such a solution corresponds to a closed orbit that (i) spends a long time x near the
saddle points (£4/a/T,0) and (ii) jumps from one saddle to the other along the
heteroclinic orbits connecting them. One period of u(x) is approximately a front
connecting (—+/a/T,0) and (\/a/T,0) followed after x ~ eX./J by the “opposite”
front connecting back (1/a/I',0) and (—+/a/T',0). In the original variables, we have

e=Xe)/J inm(z — X, — Jt)
exp|— <

€ _ cpvh Lelval(
5.9 E(x,t;e)—FEo(z)~— Un
( ) ( ) O( ) L n%(i J’Ui(EQ_El)

for 0 < z < X.+ Azx. Here 4, is the Fourier coefficient of the antiperiodic solution of
(5.7)—(5.8). E(z,t;€) — Eo(x) decreases exponentially to zero as (z — X, — Ax) grows.
One period of E(z,t; €) may thus be described as follows. The front connecting the two
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saddle points mentioned above moves away from = = 0 with speed J and an amplitude
that grows exponentially with z. After reaching z ~ X, two things happen: (i) the
front enters (X. + Az, L] and is exponentially attenuated as it moves further; (ii)
at * = 0 another front with slope of different sign to the first one is created and
starts moving. When this second front reaches x ~ X, a new front like the first
one is created at x = 0 and the period is completed. This situation is akin to a
Gunn effect mediated by waves that decay after penetrating a distance x ~ X in the
semiconductor. In [18] such a situation was numerically observed for a curve v(E)
which saturated after the maximum at F = FEj; was reached, when the boundary
condition at x = 0 gave rise to a field on the saturating region? of v(E) (cf. also
[42, §4-4, particularly Figs. 4.3 and 4.4]). A similar behavior has also been observed
in another semiconductor model [13]. For this model the reduced equation is also
hyperbolic but now second order, and additional terms give contributions to I' in
(5.7) that may account for a supercritical bifurcation without invoking subdominant
terms. This confinement of the wave dynamics to a small part of the semiconductor is
provoked by the boundary condition we have used and is related to similar phenomena
in other pattern-forming systems [14]. Experimental confirmation in p-Ge may be
found in [24].

Remark 5. Tt is important to note that the amplitude of the oscillations grows as
|6 — pa|'/? /L according to (5.6) and (5.9). Thus the interval of voltages for which our
asymptotic expansion holds increases with L2, and therefore the corresponding inter-
val of “average” electric fields (¢/L) increases with L. In physical words, the onset
region where bistability or intermittency may be expected increases with semicon-
ductor length. This agrees qualitatively with experimental observations in p-Ge (for
which similar analyses of the instability have been performed [13]), where phenomena
in the onset region were reported only for quite large samples [25].

6. Discussion. We have performed the calculation of the Hopf bifurcation of
small-amplitude current oscillations at the critical voltage for the standard model of
the Gunn instability in n-GaAs. Our method for dealing with a partial differential
equation coupled with an integral conservation law is clearly applicable to problems
in other fields. For example, to the problem of synchronization of infinitely many
oscillators coupled with their mean field, in the presence of frequency noise and white
noise [9], the one-oscillator probability distribution obeys a drift-diffusion equation
(Fokker—Planck) subjected to an integral constraint which establishes the link between
the order parameter and the probability.

Let us return to the semiconductor model for n-GaAs. In the previous sections
we have shown that the oscillatory branch bifurcating at ¢, may be subcritical or
supercritical, according to the value of L. We have not explored in detail what may
happen at ¢, the end of the Gunn instability, except for L near L,, and for B = O(1)
as In L — oo, where the Hopf bifurcation is subcritical (cf. the end of §4 and also
(5.5)). For large L and small B the analysis of §4 may not be applicable because
v] ~ B < 1 (cf. §5). Similarly, our study of the steady state and its instability does
not apply to the more realistic case of a saturating v(F) curve near ¢,,. See [42] for
numerical simulations of this case.

2 This provides a small enough |v}|, and therefore the subdominant terms that we have neglected
in our derivation might be of the same order as those kept here. A supercritical situation would then
be a possible outcome, which would explain the phenomena observed by [18].
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Putting together the analysis of the onset and fully developed Gunn instability
provides us with a global bifurcation diagram and poses several new problems. Let us
consider the case of a long semiconductor L > 1 where asymptotic analyses of both
the onset and fully developed Gunn instability [22] exist. (For L = O(1), we have a
Hopf bifurcation at simple eigenvalues. The changes from subcritical to supercritical
bifurcation and then back to subcritical bifurcation as L increases may be interpreted
with the help of the bifurcation diagrams in [16].) Very briefly, the voltages at which
the steady state become unstable, ¢, given by (2.6) and (2.21), and at which the
Gunn oscillations appear, ¢. [22], are of the same order, F;(J.) L. There are two
possibilities:

1. ¢a > ¢.. There is bistability between the stable steady state and the Gunn
oscillations for ¢, < ¢ < ¢, for the case of (5.5), in which the Hopf bifurcation
at the onset of the instability is subcritical.

2. ¢o < ¢.. For the case of (5.5) (subcritical bifurcation), there is no stable
solution in the voltage interval ¢, < ¢ < ¢.. Given that, once a solitary
wave has been created, it moves to £ = L and that the instability of the
steady state is concentrated near z = 0, a possible outcome is a type 1 in-
termittency [35]: there would be “laminar” stages where J(t) would take its
steady value, followed by irregular firings of solitary waves near z = 0. This
phenomenon might have been observed in n-GaAs by Kabashima, Yamazaki,
and Kawakubo in 1976 [23] (especially pp. 923-924): they also reported (very
small) hysteretic phenomena between oscillations and the steady state. See
also Gunn’s experiments on long n-GaAs samples [20]. For the supercritical
bifurcation case (conjectured for a saturating v(E) and large contact resistiv-
ity), it could be that the bifurcating solution branch smoothly becomes the
Gunn oscillation branch or that these branches are disjoint. If the latter is
the case, we could have either bistability between small- and large-amplitude
current oscillations or an intermittency® region where there are no stable
time-periodic or stationary solutions.

Further numerical and asymptotic analyses [28] are needed to ascertain which
possibilities are realized in the present or related models. One open problem is the
role played by fluctuations in the origin of the experimentally observed intermittency
at the onset of Gunn-type instabilities [23], [25]. Fluctuations have been modelled
by stochastic equations, either in mode-mode coupling theories [39] or in fluctuating
hydrodynamic models [27], [15]. In all these works the fluctuations are considered
small disturbances about the steady state for ¢ < ¢, which may not capture the
intrinsically nonlinear solitary wave dynamics essential to the Gunn instability.

Interesting open problems are posed by the case of alternating current (AC)+DC
voltage bias. Numerical solution of drift-diffusion models show temporal chaos with
wave dynamics of the electric field [38]. Experiments in p-Ge [26] demonstrate both
this type of temporal chaos and spatiotemporal chaos where the wave dynamics is
such that different parts of the semiconductor are uncorrelated. Except for some
preliminary numerical calculations, there is little analysis of the relevant model [3]
with AC+DC voltage bias. Nothing is known about the possible effect of fluctuations.

Finally, let us point out that the drift-diffusion model we have studied here is
related to the continuum limit of discrete drift models of electric field domains in doped
superlattices [5]. A Gunn effect due to periodic formation, motion, and annihilation of

3 Now a type 3 intermittency between small, and large-amplitude current oscillations, of the type
observed by Kahn et al in p-Ge [25].
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domain walls (charge monopoles) seems to be responsible for some of the time-periodic
oscillations of the photocurrent experimentally observed [33].

Appendix A. Linear stability of the steady state for In L > 1. We recall
here the more salient features of the proof of Lemma 2 [8]. As said in Lemma 1, the
steady state differs appreciably from the piecewise constant profile

E=FE, 0<z<X,
(A1) E=F, X<z<IL,

only in a transition layer of O(1) width centered at x = X and in a narrower boundary
layer of O(8) width at x = L. Near the critical voltages ¢, and ¢, we have 1 <«
X < L. Tt is convenient to split the solution of (2.18)-(2.20) as follows:

OFE(z; J)

(A.2) é(x; A) = ép(z; A) + h(z; M) o

where é,(x; A) obeys (2.18) with the natural boundary condition

(A3) 8(00) = —2

{};:X ~ ép(X — A:L‘;)\)(aSAJ? i OO)

Any solution of (2.18), é,(z; A) in particular, satisfies

A J
(A.4) ép(X + Az; X)) ~ ot

(as Az — 0).

The second term in (A.2) solves (2.18) with j; = 0 and an appropriately modified
boundary condition. It is given by [8],

h(z; A) = h(X;N) exp{—)\x_x'l'E}x;J) —EO}7

(A5)  A(X;A) ~

 (1=puy)Jj exp | - (P2 T2 X + (o — Ea)A
A+ pN) (W + Nepvh P J '

Here Ej is as defined in Lemma 1. As (z—X) — oo, the second term in (A.2) becomes
exponentially small, so that é ~ é, in (X + Az, L] and

/L (L—X — Az)j Lj

(A.6)

édz ~ ~ .
X+Az Vi + A vp A+ A

For A to be a zero of Z()\) in (2.19), the integral of é on [0, X + Az) has to be of the
same order as (A.6). The contribution of é, to this integral is, according to (A.3) and
(A.4), O(X), much smaller than needed. Thus it is the contribution coming from the
second term of (A.2) that should balance (A.6). This yields

L (1-pw)JKQ) (vt NX
v+ A (1+pA) (vh+ N) e v J ’

Z(N)

X+az Hp z— X+ E(z;J) — B
K(X\) —/o 55 P [—)\ 7 ] dz

(A.7) =(Ba—E)(1+ g1 A+ ¢ A2 +--1).
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By means of (A.7), we can rewrite the impedance condition Z()A) = 0 as follows:
- E /
(E2 1)(1 2,0’02)J’Ul F(A) {_(U2+/\)X __lnL} N—l,
cL vy J
(A.8) FA) =1+ fA+f22%+

where f1 and f, are given by (2.26) and (2.27), respectively. A study of (A.8) yields the
formulas in Lemma 2 for X, the critical frequencies, and the dispersion relation, [8].

Appendix B. In the amplitude equation (4.18), A\; = % at ¢ = ¢.. To
prove this result, let us dlfferentlate the equations (2.18)—(2.20) for é with respect to
@. We obtain an equation for 2 S ¢ = é4 which can be simplified by using the equations

for 2 % = E4 (found by differentiating the steady-state equations (2.1)—(2.3) with
respect to ¢). The result is
Ol(E) & " ,_ OV'(E) Eyé

B1) LU L v (B)] ey = Dy +0(B) Byl e - T2 B
(B.2) é4(0) = __PAe_ é(0; \)

1 + ,0/\ 9 )

L
(B.3) / éo(z) dz = 0.

0

Here %;\; = Ay. We see that Ay € and é E play the same role in (B.1) and (B.2) as

01(;3%“ and E; E(M in (4.4) and (4.5), respectively. Using the nonresonance condition,

that is, inserting the solution of (B.1) and (B.2) in (B.3), we should obtain for A, the
same expression (4.19) as found for the coefficient of the linear part of the amplitude
equation (4.18).

Appendix C. Direct derivation of the amplitude equation for In L > 1.
We adopt the usual ansatz (4.3). Inserting it into the equations and equating to
zero the O(e) terms, we obtain (4.4)—(4.6). For In L >> 1, the solution of equations
(4.4)-(4.5) is

EW(2,t,T) = Y Ap(T) e Ptenty, (z),
n odd

(C.l) J t X, Z A i(Q7t+wvl)t.
n odd

Here ¢ (z) = é(z;iQ, + zwn)/j as in Appendix A, with Q,, given by (2.23) and wy,

given by (2.25). The sums are over all odd integers and they include both unstable

modes with n of the order of N given by (2.32), as well as linearly stable modes with

larger n. Since the solutions have to be real, A_, = A,, in (C.1) and in what follows.
When we insert (C.1) in (4.6), we obtain

L _#
(C2) [ tnl@do~ Yz 3)lge
0 U1
The right side on this expression is O(e2L) because €, = O(V/6X) = O(e) from the
dispersion relation. This means that, to the order in € we are considering, (C.1) is
the solution sought. Nevertheless, when using it, we need to add (C.2) times €2 to
the left-hand side of (4.12) to obtain a correct result (see below).
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We now insert (C.1) in (4.7) and (4.8) and solve these equations with the ansatz:

E(z)(x ¢, T) Z et bp+q,2n Ap(T) Ag(T) &p,2n (),
p,q odd

(C3) J(2)(t, )= Z e2int Op+q,2n Ap(T) Ag(T) vp,2n.
p,q odd

We have ignored the correction to the frequency Q,, as it will not affect the nonres-
onance condition for (4.10)—(4.12) which yields the amplitude equations to the order
we consider here. Notice that if we restrict p and ¢ to 1 as in § 4, there are only four
terms in these sums and £, o = £_1 o coincides with &,/2 of (4.14), while & » equals
&2 of (4.14). Thus many terms are equal in the sums entering equation (C.3), but we
will not count their multiplicity: we prefer to keep them all in what follows without
gathering identical terms together. The constants v are determined as we did in §4,
by imposing (4.9). We find the following equations for the £’s and the v’s:

0 . 1/0
(04) Lgp,2n = (EIJ—U +u + ZQQn) gp,Zn = Vp2on — 5 (‘a—xvl + UH) wp Tp2n—p7

L
(C.5) /O €pon(z) dz = 0

We can approximate the solutions of these equations by exploiting the known
structure of the steady state and of é for InL > 1 (cf. §2, Appendix A, and, more
fully, [8]). It is convenient to split &, 2, in three parts:

(C.6) £@) ==0(@) + 5 (z) + b () O,
where
LEZW =y,
vy +12Q,
1/0
=2 — _- [ 2. "
(C.8) - 2 (va v >¢”¢2"_”’
2®(0) =0,
(2)
v(E )8_3__ +i2Q, h¥ =0,
(C.9) ,
B2 (0) dE(0J) _ _ v(1—puy) )
oz (14 pi29Q,) (vh +i2Qy,)

Here we have suppressed the subscripts in &p2n, Vp2n, and in Ep, as it will turn
out that functions with different subscripts are equal to leading order in the limit
InL — oo in which Q, <« 1. First of all, recall that ¢, is O(L) on [0, X, + Ax)
and O(1) on (X, + Az, L] (with 1 < Az < X.) according to (2.29), and (2.30),
respectively. Using these orders of magnitude, it is straightforward to show that on
[0, X. + Az), the solutions of (C.7), (C.8), and (C.9) are of order v, L?, and v L,
respectively, whereas they are O(v), O(1), and exponentially small on (X, + Az, L].
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The largest contributions to the integral (C.5) are thus those of Z(2) and h(?) g—f on
[0, X. + Az) and of ) on (X, + Az, L]. Keeping them, (C.5) yields

2vL L? v} L,
C.1 i 2 L T
(C.10) o "I B) U A0 T (B =By
We find

L? vy  2Jv"\ OF
~N —_——— < _ - X
§(e) 4U/§(E2—E1)2(J e >ax’0<"”< o+ Az,
L2,

C.11 ~ 2 X, L.
( ) &(x) 107 J (B — 1)’ +Az <z <

A similar discussion shows that J; = O(1/L) and that the stationary solution
E, can be neglected in comparison to E(?) in (4.10) when deriving the linear part
of the amplitude equations for the A,’s, which we will do later. We now calculate
the nonlinear part of the amplitude equation. The largest relevant terms on the right
side of (4.10) are to leading order sums of A,, ApAy,—m—p over all odd p,m times the
following common function:

L3 (OE/dz) [J o <8E)3+ 3 (@_ L a)

(C 12) 61}/:15 (E2 — E1)3 1)2 % 5 1)2 v b—.’—lj—
’ / / 2
(U_JQ_%J;—><%§> ]on0<z<Xc+Ax,
",/
(C.13) Loy v onX.+ Az <z < L.

~ 4vJ(E; - E)

After some simplification, (C.12) can be rewritten as v gz g—f, where

L3 vy (v . 9(J/v) 9% (J 2
. ~ 2 (=2 — (-1
(C14) 121;/51’(E2—E1)3{J(J+3 o8 ) T aEz\ %
on 0 < z < X+ Az. Solving (4.10), we find E®) ~ n %’j— > nmpodd AmApAn_m—p-

et on [0, X + Az). This immediately yields the leading order of the coefficient of
the term in (4.12), which is cubic in the amplitudes

X+hz HE L3vr3
Y~ U_de ~ = 3 .
0 oz 121}/1 (EQ—El)Z J?

(C.15)

Note that (C.13) yields a contribution 3v} (E; — Ey1) Jv1/(vy L), which is typically
negligible in comparison with ;. Our derivation has ignored other terms in EM and
E®) which provide contributions to the integral (4.12) of the same order as (C.13)
and are therefore subdominant compared to (C.15) when vj and (E; — E) are O(1).

To calculate the coefficients of the nonlinear terms in the amplitude equations,
we only need to know the coefficient of %47% in the nonresonance condition (3.4). By
inspecting (4.10)—(4.12) and taking into account (2.29) and (2.30), we find that
the largest contribution to that coefficient is

X.L 0A,
Jv, 8T~

(C.16)
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Note that the correction (C.2) to (4.12) divided by the coefficient of %’%—? in (C.16)
yields the correct coefficient of Q22 in the dispersion relation (2.24). The other linear
term is computed straightforwardly. Together with the dispersion relation (2.24),
(C.15) and (C.16) provide the leading-order approximation to the amplitude equations
(5.4) and (5.5) of §5.
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