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Numerical-simulation results are presented for a simple drift-diffusion model which describes time-
dependent and nonlinear electrical transport properties of extrinsic semiconductors under time-
independent (dc) voltage bias. Simulations for finite-length samples with Ohmic boundary conditions
yield dynamically stable solitary space-charge waves that travel periodically across the sample. Numeri-
cal estimates of wave speed, the wave size, and onset phenomena are in excellent agreement with recent

experiments in p-type germanium.

Spatiotemporal instabilities have recently been report-
ed in voltage-biased samples of liquid-helium-cooled crys-
tals of ultrapure p-type Ge.! > For applied dc voltages in
excess of the impurity breakdown value, high-field
domains are observed to nucleate and cross the sample,
giving rise to periodic current oscillations. Such
solitary-wave phenomena have been employed as the
basis for studies of temporal and spatiotemporal chaos in
experiments which are subjected to an additional ac volt-
age bias.> However, a theoretical understanding of the
physical origin of these solitary waves has been lacking.
In addition to p-type Ge,!~® spontaneous current insta-
bilities due to trapping effects have also been observed in
other semiconductors at low temperature including
GaAs, InSb, and Si.”° In this paper we present numeri-
cal and analytical evidence which strongly supports use
of a simple “reduced equation” model that successfully
explains in detail many observed features of the domain
dynamics in Ge under dc voltage bias, with the ex-
pectation that an exhaustive explanation of related
phenomena—including spatiotemporal chaotic
behavior —might be built upon it.

Our work is based on a drift-diffusion model with ion-
izable impurities and mobile carriers.!®!! The model
features a negative differential impact ionization
coefficient that gives rise to an effective negative
differential resistance which causes the instability. For
Ge, the dielectric relaxation time ( ~ 1 ns) is much shorter
than the characteristic time for impact ionization or
recombination on the shallow impurities (~several us)
which, in turn, is much shorter than the diffusion time
for the carriers ( ~several ms).!> This separation of time
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scales allows us to simplify the drift-diffusion model to
the following dimensionless reduced equation for the
electric field E(x,7) and the current J(7):!%13

a"fi +c1(E,J)%‘TE +c2(E,J)g—f
ey (B, =V(E) L (1a)
and
J EGndx=9, (1b)
where
¢ (E,J)=JV(E)/V(E)?, (1c)
¢,(E,J)=J[K(E)+R(E)]/V(E) , (1d)
and
(B, J)= (k(—g%—l V(E)—J 5?‘%%—)
(le)

Equation (1a) applies for electric fields above the thresh-
old for impurity breakdown, where photogeneration
terms can be ignored.!> The coefficients V(E), K(E),
and R (E) are the field-dependent carrier velocity, impact
ionization, and recombination coefficients, respectively;
their physical basis has been discussed extensively,'®!>
and numerical forms used in this paper are plotted in Fig.
1. In Fig. 1(c) we also plot the steady-state solution J vs
E of Egs. (1a)-(1d) defined by c;(E,J)=0. The parame-
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FIG. 1. Nondimensional transport quantities: (a) drift veloc-
ity V vs electric field E; (b) impact ionization coefficient K vs E;
(c) the J-E curve; and (d) capture coefficient R vs E.

ter a (=1) is the impurity compensation ratio (i.e., the
residual shallow acceptor concentration divided by the
residual donor concentration; it is close to 1 in the experi-
ments of Refs. 3-5) and ¢ is the nondimensional dc volt-
age bias. Expressions for the nondimensional quantities
used here in terms of dimensional ones have been given in
detail elsewhere;'?> the unit of length corresponds to
~0.013 mm, time ~3X 107 s, electric field ~10 V/cm,
and current density ~ 60 mA/cm?,

Equations (1a) and (1b) are to be solved with appropri-
ate initial conditions and the following Ohmic boundary
condition at the injecting contact:

E(x=0,7)=pyJ(T) . (2)

We have assumed that the contact has a dimensionless
resistivity p,>0. This boundary condition is a simple
phenomenological current-field characteristic curve used
in previous studies,'* ! and the results obtained with it
can easily be extended to nonlinear metal-semiconductor
characteristic curves.!” 1 The reduced model Egs. (1)
and (2) is expected to be a good approximation of the full
drift diffusion model except in a very narrow boundary
layer near the receiving contact at x =L, where the elec-
tric field changes abruptly to satisfy an Ohmic boundary
condition of the same form as Eq. (2). The dimensionless
semiconductor length L corresponding to experimental
p-Ge samples is very large (estimated to be 1150 for Ref.
4).

We have performed a series of numerical simulations
of Egs. (1) and (2) with numerical values of the parame-
ters corresponding to p-Ge experiments (a=1.35,
L =1150, and p,=4.0). Simulations were performed on
a Sun SPARC workstation (model ELC) and incorporat-
ed a Newton’s-method routine which adjusts the current
J(7) to maintain the global constraint Eq. (1b). Results
are shown in Figs. 2 and 3. Figure 2 corresponds to an
average field ¢/L=0.7599 (just above the field
¢,/L =0.7480, for which the steady state becomes unsta-
ble); notice that the current oscillation in Fig. 2(b) is due
to the nucleation and propagation of small waves whose
amplitudes decay as they move into the sample, so that
they disappear before reaching the receiving contact.
Such behavior is also observed in the experiments of
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FIG. 2. (a) Spatial form of electric field vs position and time
for ¢ /L =0.7599; (b) corresponding current J(7).

Kahn, Mar, and Westervelt.> Figure 3 corresponds to a
slightly larger voltage ¢/L =0.7605 where the current
oscillations are due to solitary-wave dynamics. Thus far
from the contacts a solitary wave moves with constant
speed and the current has a flat interval. When the wave
arrives at x =L, it starts disappearing and J(7) increases
until it surpasses a critical value J, defined by
c3(po/,»J.)=0 [i.e., the straight line J=E /p, cuts the
steady-state curve J=J(E) at E=E_, where E_ is in the
negative differential part of the J(E) curve]. At the same
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FIG. 3. (a) Spatial form of electric field vs position and time
for ¢ /L =0.7605; (b) corresponding current J(7).
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FIG. 4. (a) Bifurcation diagram showing time-averaged J vs
¢ /L. (b) Fundamental oscillation frequency for J(7) vs ¢ /L.

time a small solitary wave is created at the injecting con-
tact and begins to move toward x =L, gaining all the
area lost by the dying wave, while the current diminishes.
When the wave at x =L has disappeared completely, the
other solitary wave has reached maturity and the process
repeats itself. For voltages just below ¢,/L =1.84 (the
voltage above which the steady state is again stable), the
solitary-wave dynamics are very similar, although the
waves are almost as wide as the entire sample.

Our numerical results can be interpreted theoretically
with the help of the global bifurcation diagram (current
averaged over one period versus dc voltage) shown in Fig.
4(a). Figure 4(b) shows the fundamental frequency of the
current vs dc voltage and clearly indicates an abrupt
jump at ¢g/L =0.7601>¢,/L which corresponds to the
transition from the decaying periodic waves of Fig. 2 to
the fully developed solitary waves of Fig. 3. This transi-
tion is slightly hysteretic (not visible on the scale of Fig.
4) and—when coupled with low level noise typically
found in experiments—it might be expected to produce
intermittent transitions between the damped and travel-
ing waves as observed in experiments near the onset re-
gime.* Outside this narrow hysteretic region, Egs. (1) and
(2) have unique periodic solutions for given values of dc
voltage. For voltages outside the interval (¢,,¢,) the
time-independent steady state is always stable. Inside
(¢or@,,) the electric current J(7) is periodic, but its fre-
quency and shape and also the spatial profile of the elec-
tric field change according to the voltage (Figs. 2-4).
For long semiconductors (L >>1) we have!?

¢,=E,L+(E,—E|)[V(E;)/0(E;)]In(L),
o(E)=|dj/dE]| .
Here E(J)<E,(J)<E;(J) are the three solutions of

(3)
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¢3(E,J)=0, calculated at J=J,. The simulations of Eqgs.
(1) and (2) give a value of onset of ¢,=860, and this
agrees quite closely with the value obtained by direct
evaluation of Eq. (3). For L, In(L)>>1, and voltages be-
tween E(J.)L and E,(J,)L the profile of the stationary
(but position-dependent) field can be approximated by a
step function E(x)=E,(J,) for O0<x <Ax, and
E(x)=E(J,) for Ax <x <L, where

Ax=[¢—E,(J,)L]/[E,(J,)—E(J,)] . (4)

We can linearize Egs. (1) and (2) about this approximate
stationary field and take J=J,. We then solve the result-
ing equations with a separation of variables ansatz'3

E(x,7)=E(x)+e*2(x) . (5)

The resulting expressions can be simplified in the limit
L — + . We find that

7o, J (K, +R,)
A=i(2n+1) . »
(Vyo,+J,V5)In(L)

(6a)

{n=0,%1,...,0[In(L)]} ,

with
v, o3l
Ax=—1n . (6b)

In Egs. (6a) and (6b) the subscripts 1 and 2 mean that the
corresponding functions are to be evaluated at E(J,)
and E,(J,), respectively. Equation (6a) shows that there
are many modes that become unstable for voltages larger
than ¢, in the limit L — c. The main conclusion of this
analysis is that for voltages just above ¢,, and for
In(L)— o, the electric field has a profile similar to that
of the steady state but with traveling waves of period 2Ax
(and amplitude exponentially growing with x) which
move with O(1) velocity on the high-field portion of
E(x). For Ax <x <L, the field difference with the steady
state decreases exponentially with (x —Ax). Due to Eq.
(2), the current is a periodic function of time centered
about J,. Since the period of the oscillation is 2Ax, there
is typically one ‘‘solitary wave” moving from x =0 and
another one being created behind it. The wave reaches
its maximum size at x =Ax and is then attenuated as it
proceeds further. This situation is similar to that shown
by the numerical simulations for voltages near ¢, (Fig.
2). As the voltage grows, so does the amplitude of the
current oscillation and of the waves which penetrate
more deeply into the attenuation region Ax <x <L
(while still reaching their maximum size at x =Ax), as
one may expect from the linear stability analysis of the
steady state.!20

The previous pattern of the oscillations continues until
the abrupt drop of the average current at the transition
voltage ¢z For voltages between ¢, and ¢z, we say that
the oscillation of the current is typical of the ‘““onset re-
gion” of the instability, because its character can be ex-
trapolated from an analysis of the bifurcation at ¢ =4,
The frequency dependence of such a region is apparently
also experimentally observed in long p-Ge samples.®’
For larger voltages, the oscillations of the current are
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produced by the dynamics of the traveling solitary waves.
We call the region (¢g,¢,) the “solitary-wave region” for
this reason. We conjecture that ¢ is of the order of mag-
nitude of the minimum voltage for which a solitary wave
detached from the contacts can be stable. In the onset re-
gion the solitary waves are too small to be stable and thus
decay as they move through the attenuation region of the
semiconductor.

A strikingly similar bifurcation scenario near the onset
has recently been reported for a standard drift-diffusion
model of the Gunn effect in GaAs.!*"2! This similarity is
surprising because the dynamical equations for the Gunn
effect and Eq. (1)—as well as the microscopic mechanism
underlying the respective instabilities—are of fundamen-
tally different character. Thus the Gunn effect is de-
scribed by a partial differential equation of parabolic
type,! and results from negative differential carrier mo-
bility associated with very rapid intervalley transfer,
whereas Eq. (1) for p-Ge is hyperbolic and the instability
mechanism in p-Ge is due to negative differential trap-
ping on impurities (via relatively slow hole capture or im-
pact ionization processes). In both cases a crucial role
appears to be played by the constant voltage constraint
Eq. (1b) and the Ohmic boundary condition Eq. (2).

The region near ¢ =¢, can be analyzed in the same
way as the onset region and will be discussed in a future
paper. We emphasize that our simulations considered a
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J(E) [Fig. 1(c)] curve that has two positive extrema and
an injecting contact with a relatively high resistivity.
Thus different phenomena should be expected for other
contact resistivities. For instance, we have numerically
observed current oscillations caused by traveling electric
monopole dynamics for low-resistivity contacts, i.e.,
0<po<pon->*

Comparison to available experimental data shows ex-
cellent agreement with most of the dynamical properties
of the solitary waves. Nonetheless, several interesting
questions remain. For example, does the hysteretic tran-
sition at ¢z quantitatively explain experimentally ob-
served intermittency phenomena®> when a reasonable ex-
perimental noise term is added? Another open question
is whether or not temporal and even spatiotemporal
chaotic behavior observed for ac+dc bias experiments
will be captured by the “reduced” model Egs. (1) and (2);
work in this direction is currently in progress.
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