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THE GUNN EFFECT: INSTABILITY OF THE STEADY STATE AND
STABILITY OF THE SOLITARY WAVE IN LONG EXTRINSIC
SEMICONDUCTORS*

LUIS L. BONILLA!, FRANCISCO J. HIGUERA'™¥, aND STEPHANOS VENAKIDES?

Abstract. A linear stability analysis of the stationary solution of a one-dimensional drift-diffusion
model used to describe the Gunn effect in GaAs is performed. It is shown that for long semiconductor
samples under dc voltage bias conditions, and small diffusivity, the steady state may lose stability via a Hopf
bifurcation. In the limit of infinitely long samples, there is a quasicontinuum of oscillatory modes of the
equation linearized about the steady state that a acquire positive real part for voltages larger than a certain
critical value. The linear stability of the solitary wave characteristic of the Gunn effect is proved for an
idealized electron velocity curve in the zero diffusion limit.

Key words. Gunn effect, current instabilities in semiconductors, Hopf bifurcation
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1. Introduction. The Gunn effect is observed when a dc voltage is applied
through a purely resistive circuit to a semiconductor displaying negative differential
resistance (NDR) over a range of values of the electric field. When the dc voltage
exceeds a certain threshold, a solitary wave is created at one of the two metallic
contacts that limit the semiconductor, it propagates through the sample, and is
destroyed at the other contact. This process, repeated periodically, gives rise to a
periodic oscillation of the current in the external circuit which constitutes the Gunn
effect. In experiments by Gunn, [11]-[13], the electric field was measured along a long
negatively doped gallium arsenide (GaAs) semiconductor sample and periodic oscilla-
tions of the electric current in the microwave range were directly observed. An
asymptotic analysis of the Gunn effect in the classical drift-diffusion model has been
performed recently [14] (see also [1], [4], [18], and [19]), but there remain important
points to be elucidated. The study of the onset of the Gunn effect is among these (see
[5]), as experiments in n-GaAs [15] and p-Ge [16], [17], [20], [31] seem to indicate that
interesting complex phenomena, including intermittency, may occur in the onset
region. Another important open problem is proving the stability of the fully developed
Gunn effect solutions that were constructed asymptotically in [14].

In this paper we show that the base state, corresponding to a time-independent
electric field in the semiconductor, loses stability because complex conjugate eigenval-
ues of the linear stability problem cross the imaginary axis. This suggests that a Hopf
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bifurcation occurs, which will be confirmed elsewhere [5]. We also show that, in the
limit of infinitely long semiconductors, a quasicontinuum of oscillatory modes be-
comes unstable as the voltage surpasses a critical value, something that was conjec-
tured previously by one of us using a very simplified description of the steady as a
two-step profile for a different model [2] (see also [6] and [7]). With respect to the
stability of the Gunn oscillations constructed in [14], we only have a partial result: for
an idealized shape of the electron velocity curve and ignoring diffusion, we are able to
prove that the fully developed solitary wave (far from the contacts) is linearly stable.
In the literature there are incomplete proofs of the stability of the solitary wave for
the general case (general electron velocity and nonzero diffusion) [8], [32], all of which
make a separation of variables ansatz (see the discussion in [3]). Our proof follows a
different path and thus we include it here in spite of the drastic simplifications of the
model we have made in the hope that it could lead to a proof for the general case.
To describe these phenomena, we use the following model:

(1.1 o 1
. X =n s
dn  dJ,
(1.2) —_ =0,
at ax
an
(1.3) J,=v(E)n—6—.
ax

This model is a reduced form of the drift-diffusion equations [24], where the transport
of holes has been neglected. Equation (1.1) is Poisson’s law for (minus) the electric
field E(x,t) inside the sample. Equation (1.2) is the continuity equation for the
density of the mobile carriers (electrons), n(x, ), and J, is the electron current per
unit area of the sample cross section, given by (1.3). Equations (1.1)—(1.3) are written
here in nondimensional form, [1], and they should be supplemented by the voltage
bias condition (see below), and boundary and initial conditions. While more compli-
cated models also display Gunn oscillations [9], [25], the present model is generally
agreed to be sufficient to account for the experimental observations in semiconduc-
tors longer than 1 uwm [29], [30].

In these equations the concentration of donor impurities has been assumed to be
uniform and constant (and set equal to one) and & (0 < 8 < 1) is a constant diffusion
coefficient for the electrons [1]. (A field-dependent small diffusivity can be considered
with minor changes.) v(E) is the electron drift velocity, an N-shaped function with a
region of negative slope reflecting the effect of the transfer of hot electrons between
different valleys of the conduction band. It is the negative slope that gives rise to
NDR [27], [28], [32]. The velocity function can be modelled as [21]:

1 E4 ’

We eliminate the carrier concentration n(x,t) using (1.1) in (1.2), and then
integrate with respect to x, thereby finding

2

oE oE
(1.5) — +uv(E)[— +1|-5 > =J, 0<x<L, t>0,
Jat Ix x
which is Ampere’s law: the constant of integration J =J(¢) can be identified with the

total current, sum of the displacement current, JE /dt, and of the electron current J,.
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The current J(¢) is essentially that which is measured on an purely resistive external
circuit [1], [4]. Equation (1.5) and the voltage bias condition,

(1.6) fOLE(x,t)azx= ¢

are the equations for the unknowns E(x,?) and J(¢). Ignoring local details at the
metal-semiconductor region, we will assume Ohm’s law at the two ends of the
semiconductor: E = pJ,, or, by (1.3) and (1.5),

)
1.7 E+p(?—1)=0, at x=0,L, t>0,

where p> 0 is the dimensionless resistivity of the contacts at x=0 and x=L.
Contacts with different resistivities at x =0, L can also be considered with obvious
changes in our results. The idea of using a boundary condition at the contacts that
locally relates the electron current with the field is due to Kroemer [22]. Contact
current density-electric field relationships more general than the linear law (1.7) have
been used by Grubin [10] (He considered a general monotone increasing curve; see
also [28, p. 200]). For the purpose of the present paper, viz linear stability analyses of
the steady state and of the solitary wave, a general curve will only introduce minor
changes in our results. In particular one should replace p by the reciprocal of the
slope of the current-field contact characteristic curve at the proper value of the field
[2], [3]. Together with the boundary conditions (1.7) and a convenient initial condition,

(1.8) E(x,0) =f(x) =0, 0<x<L.

Equations (1.5)—(1.8) constitute a mathematically well-posed problem (see global
existence, uniqueness, and smoothness properties in [23]).

For most of the experiments performed on GaAs samples [11]-[13], the dimen-
sionless length L is very large and the dimensionless diffusivity § is very small.
(Notice that a 10 micron GaAs sample was assumed in [1], which is quite short
compared to Gunn’s 200 micron samples in other experiments [12]-[13].) Here we
thus consider the limits 6 |0 and L — +oo,

In the limit 6 | 0 we can resort to matched asymptotic expansions to understand
the Gunn effect. The positive sign of the convective term in (1.5) implies that
disturbances propagate from left to right. This in turn indicates that a boundary layer
appears at the receiving contact x = L [1], [2]. Setting § =0 in (1.5) and ignoring the
boundary condition at x = L, we obtain the reduced outer equation

- JE
(1.9 — +v(E)

=J, 0<x<L, t>0,
at

oF
—+1
ax

to be solved together with (1.6) and appropriate initial data (1.8) and the boundary
condition

JE(0,t)
Jt

(1.10) E(O,t)-!—p[ —](t)] =0, t>0.
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Near x = L, we must insert a diffusive quasistationary boundary layer [1], [2], with

(1.11D) (E) oF 6&2
' v dx ax?’
dE, E,
(1.12) E(L,t)=E.(¢), with — +—=J(¢),
dt p
(1.13) E(x,t) ~E,, as(L-x)>§ (§.0).

Equation (1.12) is the boundary condition at x=L and (1.13) is the matching
condition with the solution of the outer problem; E_,, is used here to denote the
outer solution at x = L. The solution of (1.11)-(1.13) is

(1.14) o OEE (L) _x-L
. &_g_Q( s “out 5t )) §=T’
(1.15) O(E, Epy) = [* v(s) ds,

E(¢,t) dE’
1.1 - e
( 6) § '/;‘c(t) Q(E’;Eou[)

In writing down the quasistationary boundary layer problem (1.11), we have used the
following argument. The natural time scale for the evolution of the boundary layer
solution is 7=1¢/8. At this fast time scale the outer solution is quasistationary (it does
not have time to change) and the normal modes with eigenvalues of order 1/8
associated with the evolution of a small disturbance about (1.14)—(1.16) are all stable,
as indicated later in Appendix B. Thus no instability appears at the boundary layer at
these short time scales and (1.11) is a reasonable scaling for slower processes.

The rest of this paper is organized as follows. In §2 we construct the steady state
of the problem (1.6), (1.9), and (1.10) using matched asymptotic expansions in the
limit L — +. The field at the diffusive layer is given by (1.16) and it can be used
straightforwardly to build a uniform approximation of the steady state of the complete
(1.5)—(1.7). Then in § 3 we study its linear stability in the relevant limit & |0 and
L — +co (with L8 |0), and we show that the steady state loses stability via a Hopf
bifurcation. Section 4 contains a brief reminder of the asymptotic construction of the
solitary wave far from the contacts (in the limit § |0 and L — 4+ with L& | 0) and
our linear stability proof for a very simple v(E) curve and 8 = 0. Lastly, §5 is devoted
to a discussion of our results, and several technical matters are considered in the
Appendices.

2. The steady state. When E and J are time-independent, (1.9) and (1.10)
become

D é'E_J—v(E)
- TN
2.2 E0) = pJ.

Let E(x;J) denote the solution of (2.1)-(2.2) corresponding to a given positive J. The
current J is then determined as a function of the applied voltage ¢ by the equation

(2.3) q>(J)stLE(x;J)dx=¢,
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which has a unique solution J for every positive ¢. To see this we observe the
following.

(a) The function ®(J) is monotone increasing. Indeed, let F(x;J) = d,E(x;J).
By differentiating (2.1) with respect to J we obtain easily

oF JE
24 u(E)—+v’(E)(1+——)F=1, F(;J)=p>0.
ox Jdx

Integrating this first-order equation for F we verify directly that F = J,E(x;J) > 0.

(b) lim, ,®(J)=0.

Indeed, E(0;J) = pJ — 0 as J — 0. Furthermore, for small J, (2.1) has a unique
fixed point E,(J) which is a global attractor as x increases and which tends to zero as
J — 0. Thus for each x,lim, |, E(x;J) =0, and lim, ; , ®(J) =0.

(© lim,; , ®(J) =, by a similar argument.

The qualitative behavior of E(x;J) and of ®(J) are seen by the analysis of the
one-dimensional phase diagram of (2.1). Its fixed points satisfy J —v(E) = 0. When
the curve v =v(E) is as in Fig. 1 and v,, <J <uv,,, the function J—v(E) has three
zeros E((J) < Ey(J) < E4(J). The point E, is unstable, while £, and E; are attractors
with basins E <E, and E > E,, respectively. The asymptotic value of E(x;J) as x
increases (in long enough samples) is E,(J) or E,;(J) depending on whether the initial
point (E,J) at x =0 (which lies on the line E = pJ) is to the left or to the right of
E,(J), respectively. Of particular interest is the value J=J, for which these two
coincide:

2.5) E,(J,)=pJ,.

This relation holds only for resistivities p € (E,, /vy, E,, /v,,), which we will assume is
the case in the rest of this paper. It is known that the Gunn effect is then mediated by
solitary wave dynamics [14]. For smaller p, the Gunn effect is mediated by monopole

v(E)

VM

El EM Eg Em E3

F1G. 1. Electron velocity versus electric field (1.4 with B = 0.02. vy, = v(Ey), v,, = U(E,,).
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wavefronts (see [14]), while for p > E,, /v,, the present model is probably unrealistic
and it has not been studied.

Let us determine the dependence of the current J with the average field ¢/L
for the problem (2.1)—~(2.3) in the limit L — +. For 0 <J <J,, the field of the steady
state decreases from E(0;J) = pJ down towards its asymptotic value E,(J); whereas
for J >J,, E(x; J) monotonically increases from E(0;J) = pJ up to E;(J) for large x
(see Fig. 2). In the limit L — +, the voltage ®(J) of (2.3) is then approximately to

E(x)

(a

E(x)
70

60t
50t
40t
30t
20}

10¢

5 10 15 20 X
(b)
Fic. 2. Steady state E(x;J) when: (a) E\(J,)L < ¢ <E,(J))L,J 1 J. (numerical values: J, —J = 5.01

X107 p=2); (b) E,(J)L < ¢ < E;(J)L,J | J, (numerical values: J —J.=10"%; p=2). We have chosen
a large enough L and the narrow boundary layer at x = L has been omitted.
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leading order E,(J)L for 0 <J <J_, and E;(J)L for J, <J. We then have that

(2.6) J~v(%),

both for 0< ¢/L <E\(J.) and for E,(J.) < ¢/L, asymptotically as L — +. The
steady-state current follows therefore the curve v(E) outside a voltage interval such
that E,(J,) < ¢/L <E,(J.). Inside this interval, J~J.. We will now describe the
steady-state field corresponding to such voltages.

Clearly, when |J —J.| <1 we have E(0;J)~ E,(J.). For what length X mea-
sured from x =0 does E(x;J) stay close to the unstable value E,(J.)? Since the
transition from FE, to E; or E; occurs over a layer of order one thickness in the
x-scale, we have

2.7 ¢~E(JIL-X)+E,(J)X, =13 (L>1),

from which we deduce

(2.8a) X~ Lﬂgi)L—, when J <J. [hence ¢ <E,(J)L],
E,(J) —E\(J,) ‘ ¢

(2.8b) xo UL J>J. [hence > E,(J.)L].

T EU) - B’

More precise calculations are carried out in Appendix A. The main results are
contained in the following.

LEMMA 1. (a) Let E((J,) < ¢/L <E,(J.). Let us fix E(X;J) =E,, where E is a
given number in the interval E(J.) < E, < E,(J.). Then for each value of X (0, L),
such that {X,(L — X)} > 1, ¢ and J are uniquely determined by the asymptotic formulae:

— X g, (s —Eyv(s)
2.9 =E,L+(E,—E)X+ +— |-+ [ ———————
(2.92) ¢=E, (B, —E) ( vl 1)’2( o) sz J.—v(s)
(s —EDu(s)
fE—lds+o(1),
g, J.—v(s)
and
c |V [0S X
(2.9b) J—J . ~— L zlexp{— 2 }
—PU; Jc
Also we have the asymptotic relations
vy(x —X)
E(x;J) ~E,—c exp - (as (x—X) > —»),
(2.103) - 1 v v
. E; 2 2
th ¢, =(E,—E - - —=|ds},
with ¢, = (E, ())exp{j;go[s_E2 O s}
vi(x—X)
E(x;J) ~E, +cpexp 5 (as (x —X) = +),
(2.10b)

E 1 v v
with cR=(E0—E1)exp{_[E°[S_E _ U(s)1_1_71]ds}.
1 1
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In the right-hand sides of (2.9a) and (2.9b), v} =v'(E,(J)), [v'(E) =dv/dE], k=1,2.
E(x;J) in (2.10) refers to the field in the transition layer: (x — X) - — (resp., + )
means leaving the transition layer towards the left (resp., right). Notice that ¢, and cy are
both positive.

(b) Let E)(J) < ¢/L <EyJ,). Let us fix E(X;J)=E,, where E, is a given
number in the interval E,(J,) < E, < E;(J,). Then for each value of X € (0, L), such that
{(X,(L-X)}>1, ¢ and J are uniquely determined by the asymptotic formulae
(2.9)-(2.10) where E{(J) replaces E\(J) everywhere. Notice that ¢, and c are now both
negative.

Proof. See Appendix A.

Remark 1. X = O(In L) for voltages near the instability threshold (see §3). Then
the first term on the right-hand side of (2.9a) is asymptotic to (J —J.)L /v, of the
same order, O(1), as the other two terms on this equation.

3. Linear stability of the steady state. In this section we study the linear stability
of the steady state. We formulate the problem and find numerically the region in the
(¢/L, L) plane where the steady state is linearly unstable (Fig. 3). We shall see that
the steady state may become linearly unstable only for L larger than a certain
minimal length L, which is near 1. For each L >L,, the steady state is linearly
unstable when ¢ € (¢,,¢,). As L increases, ¢,/L rapidly approaches E(J,). This
suggests that the L — +o approximations constructed in §2 could be of rather
extensive practical use for ¢ near ¢, (for ¢ near ¢,, our asymptotic results will be
good approximations only for unrealistically long semiconductors). We therefore find

/L B =0.05

5¢ Stable

Unstable

0 L L L L L L L L ' L L L L 1 ' L L
0 2 4 6 8 10 12 14 16 18

FiG. 3. Neutral stability curve of the steady state for B = 0.05 and two values of p. The steady state may be
linearly unstable to the right of the minimal length L,,. Notice that L,, decreases with the resistivity of the
injecting contact p. For each L > L,,, the steady state is linearly stable outside a voltage interval (¢, d,,): ¢,
corresponds to the lower branch of the neutral stability curve and ¢, to the upper branch. The dotted lines
indicate the value E\(J,) to which the lower branch of the neutral stability curve tends as L — +. The upper
branch of the neutral stability curve tends to E;(J,) as L — +, but a good approximation to this asymptotic
value occurs only for much larger values of L than those represented in the figure.
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the critical values of ¢,/L and of ¢,/L, as L — + and describe how the steady
state becomes linearly unstable at them.
Let

(3.1) J()=J+¢&j(t), E(x,t)=E(x)+eé(x,t) 0<e<l,

be a disturbance about the steady state. Inserting (3.1) into (1.6), (1.9), and (1.10)
yields

2 9é Eﬁe’ GE\ . o
2a) 3;+v( )a+(l+g)v(E)e—](t)— ,
0e(0,¢) .
(3.2b) e0,t)+p o —j(t)]=0,
(3.20) [Le-(x,t)dx=o.
0

That considering a small nonzero diffusivity 0 < 8 << 1 does not modify our stability
results is shown in Appendix B.
Equations (3.2) can be solved by the separation of variables:

(3.3) JO) =jer,  é(x,0) =eMe(x; A).
Insertion of (3.3) in (3.2) yields

£
(3.42) B v Ene ),
ox
S
(3.4b) Z(A)EfLe(x.’ )dx=0
o J

aen sy PJ

(3.4¢) é0; ) = T+ pn

The zero of the impedance Z(A) with largest real part determines the linear
stability of the steady state. We have evaluated numerically the neutral stability curve
(corresponding to the zero with largest real part being pure imaginary) for the steady
state in the parameter space ¢/L vs. L for different values of the resistivity p. The
results are shown in Fig. 3. The discontinuities in the slope of the curve in Fig. 3 are
due to the crossing of different zeroes as L increases. Notice that above a certain
L=1L,, there are two values of the voltage for each L, ¢, and ¢,, such that the
steady state is linearly stable for ¢ outside (¢,, ¢,). Notice also that ¢,/L rapidly
tends to a constant value E(J,) as L increases. This suggests that the results we will
obtain next in the asymptotic limit L — + o may be of practical applicability even for
moderate L.

For long semiconductors the linear stability of the steady state can be ascertained
without resorting to numerical calculations. For voltages smaller than E,(J)L or
larger than E;(J,)L, the steady state is linearly stable [28], [4]. Considering the
steady-state profile for J ~J, (which corresponds to all other voltages, as said in the
previous section), we can distinguish regions to the left and right of x =X where the
coefficients of (3.4a) are basically constant (E,(J,) and E(J,)) and a transition region
connecting them. Let us restrict our attention to the eigenvalue with largest real part
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and look for the instability threshold. We shall assume that Re A + v} >0, for
otherwise Re A <0, the steady state is linearly stable and we are not near the
instability threshold. Similarly, we shall assume that Re A + v}, <0, for otherwise
Re A > 0, the steady state is linearly unstable, and we have missed again the instability
threshold. Thus v, < —Re A < v}. We make the asymptotic ansatz that 1 < X < L at
the neutral stability limit. The ansatz will be verified a posteriori. Then a large
contribution to the impedance (3.4b) will come from the solution to the right of
x =X, whose width is (L —X) ~ L. In an O(1) distance after x = X, é(x; A) exponen-
tially decreases to the constant solution of (3.4a) with E = E,(J,), so that

é(x; A L
3.5) /N "y~ ,
X+Ax ] v+ A

where 1 < Ax < X is arbitrary. To obtain the leading order approximation to the
impedance Z(A) we need to find the dominant contribution of the other regions. The
transition region extends to the left up to x =0, while to the right E(x;J,) rapidly
decreases to E = E,(J,). We shall write the solution of (3.4a) and (3.4c) there as

OE(x;J)
(3.6) e(x; M) =jieé (x; M) +h(x; ) ———— 1},
ax
where é,(x; A) obeys (3.4a) with the following boundary condition:
1
(3.7a) é€,(0; M) =— ~é (X —Ax;2) (as Ax— +).
vy +A F

The condition (3.7b) below is automatically satisfied by any solution of the first-order
equation (3.4a) when Re A + v} > 0:

(3.7b) E(X+Ax; ) ~

- (as Ax - +).
vi+A

Inserting (3.6) into (3.4a) and (3.4¢) and taking (3.7) into account, we find that A(x; A)
is the solution of

oh
(3.8a) vV(E)— + A =0,

ox

9E0;J) C1-pvh
3.8b h(0; ) ———— =¢, = .
(3.80) ;) dx €0 1+ pM(=r—0h)
where

JE0;J) ¢ v} vy X
(3.8¢) P exp( 7 )
from (2.10a). The genéral solution of (3.8a) is

A

3.9 h(x;A)=h(X; /\)exp(—j[x—XJrE(x;J)—EO]),

where (2.1) has been used. We calculate A(X; A) by inserting (3.9) in the boundary
condition (3.8b):

J 5+MVX+ME,—E
(3.10) h(X; M)~ il exp(—(v2+ VX + ME, 2)).

cLU,y J
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Notice now that, whenever v}, + Re A <0, the large exponential factor in (3.10) makes
the second term in (3.6) dominant over the first one in the transition region. Then the
contribution of (3.6) to the impedance can be approximated by

X+Axe(x ’y)

(3.11)[ dx ~h(X; ))

0

« fX+ ax OFE
0 ax

—exp{——[x X+E(x;J)— EO]}dx

Adding (3.5) and (3.11) we obtain

(3.12) Z(n) ol k(v e+ VX

' TUEA ) e"p{ 7 }
x+ax 0E A

(3.13) K()) =j;) a—xexp{——j[x—X—%E(x;J)—Ez]}dx

Notice that (3.12) holds for any value of the eigenvalue A such that v, < —Re A <v].
(2.10) then implies that the integrand in (3.13) tends exponentially to zero as
|x — X| — o. This means that we can replace the endpoints of the integral (3.13) by
+oo. At the instability threshold, A =iQ, and |[K(GQ)|<|KO)I=E,—E, if Q is a
nonzero real. Thus [K(iQ)| is of order 1 and (3.12) implies that Re A = 0 at X ~ X (Q)
given by

J ¢, LIvy (v +iQ)(A +ipQ)|
(3140) XL = {J(l = o, +m)1<(m)|}
(3.14b)
QX.(Q) (v} +iQK(Q)
— ~2m-r+arg{ (o —ia +in)} n=0,+1,+2,....

It is straightforward to prove that X.(Q) in (3.14a) is an increasing function. Let us
consider ¢ close to ¢, for which (2.9a) holds. Since the voltage is an increasing
function of X (cf. (2.92)) and we know that the steady state is unstable for ¢ > ¢,, the
instability threshold corresponds to the lowest possible (). Let us now consider ¢
close to ¢, for which (2.9a) holds if E; replaces E, in it. Now, the area under the
electric field (numerically equal to ¢) is a decreasing function of X, and therefore of
Q). We know that the steady state is unstable for ¢ < ¢,, and therefore ¢, corre-
sponds to the lowest possible (2, as was also the case of ¢,. From (3.14a) and (3.14b)
we thus see that the instability threshold is reached at X = X, ~ X_.(0),

(3.15) X~ 1 eyl S Lto®.
. ~ —1In n +
<ol M T = p) B, —ED | 105l

Remark 2. Condition (3.15) has been obtained assuming Re A + v}, < 0. We may
wonder whether it is not possible to find unstable eigenvalues outside this range so
that the steady state be unstable for X smaller than (3.15). The answer is no: If
Re A + 05 >0, (3.5) still holds, but now the contribution of the high field region
x€(0,X+ Ax) to the impedance is (at most, for large enough X and/or Re A),



1532 L. BONILLA, F. HIGUERA, AND S. VENAKIDES

X /(s + A) = O(X/)) which, for X < X_, cannot cancel the O(L /)) term (3.5). Thus
Z(A) does not have zeros with Re A > [v},| for X <X, and the steady state is then
always linearly stable for such X.

Condition (3.15) yields asymptotic estimations of the critical voltages: ¢, via
(2.92) and of ¢, via (2.9a) with E; instead of E,. In both cases at X =X, the
eigenvalues with largest real part are A, =iQ,[1 + o(1)],

Qn+ DJm
(3.16) Qn~——X—, n=0,+1,+2,...,0(In L).

[

Each eigenvalue A, has zero real part at X =X.(Q,) > X.(Q,_,). These values of
X.(Q) are asymptotic to X.(0) ~ X, up to o(1) terms. Then at X ~X_,[A, —iQ,| <
Q,. At X =X_, all the eigenvalues have negative real parts except for A, =i(},. For
slightly larger X (or, equivalently, voltages slightly inside the unstable region in Fig.
3), more and more eigenvalues acquire positive real parts. We will now calculate the
relationship between the o((),)-corrections to each eigenvalue, A, —iQ),, and (X —
X),Q,.

For voltages ¢ € (¢,, ¢,), X is larger than (3.15) which means that Re A # 0 (in
fact, Re A > 0 by continuity). Near the critical voltage A =o(1) according to (3.16).
Then we may expand ¢, in (3.12) and the integrand in (3.13) in powers of A, and the
condition Z(A) = 0 becomes

(E,—E)(A — pvy)Jv, (W, +MDX
(17 -1 P 1F(A)exp{—__2——lnL},
c Uy J
(3.18a) FN) =1+fiA+f,A*+0()\),
vy — v
(3.18b) fi==p=—— — ¢,
U0,
U AR R
(318(:) f2=(p+(Pl) p+ ’o ro 12 ~ ¢
UIUZ Ull)2

Here the ¢,’s are the coefficients of the expression of the integral in the right-hand
side of (3.13) (divided by —K(0)) in powers of A:

(3.19) @

(-D* +2 JE(x;J) (x =X+ E(x;J) —E, kdx
CkWE,—E) ) ox J ’
k=1,2,....

We have set +o as the endpoints of the integral which only adds negligible
exponentially small errors to (3.19). We now find the dispersion relation between
Re A,(¢— ¢,) and Im A near X =X, (equivalently, ¢= ¢,). This relation will
demonstrate that d Re'A/d¢ >0 at ¢ = ¢, and, therefore, that the steady state may
lose stability via a Hopf bifurcation, [5]. The following result relates changes in the
voltage to changes in the location of the transition layer of the steady state:

LEMMA 2. Let X + X, + 86X, 6X < 1. Then the voltage corresponding to X is either

(3.20a) b=+ 0p, with 8¢ ~2(E, —E,)6X,
or
(3.20b) b=, — 8¢, with 5¢~2(E;—E,)8X.

Proof. See Appendix C.
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When ¢ = ¢, + 8¢ (resp. ¢ = ¢, — 6¢), 8¢ < 1, we have
(3.21) A=iQ, +a,+iw, (a,0,)<Q, <l

Here (), is given by (3.16) and a, = w, = 0 whenever ¢ = ¢, or ¢ = ¢,, so that a,
and w, tend to zero as 8¢ or X tend to zero. As shown in Appendix C, the variation
8J of the steady-state current due to 8X is of order §X/L, so that §J < X, 8J < §X
and we will ignore the variations of J due to 6X in what follows. We now substitute
(3.21) and (3.16) in (3.17) with X = X_ + 86X, use (3.15) and (3.18a), and finally equate
real and imaginary parts of the resulting expression. We find

518X J(fz_%flz)ﬂi
T X ’

Jf] Qn
3.22b ~ .
( ) w X

(3.22a)

n
c

We have evaluated numerically the coefficient of Q2 in (3.22a) (which is minus an
effective diffusivity since it multiplies the square of the wavevector ), in the
dispersion relation) for values of the resistivity in the interval E,,/v,, <p<E, /v,,
with typical values of B (B = 0.002). The result is that the effective diffusivity (which
is defined as minus the coefficient of Q2 in (3.22a)) is always positive.

80X is related to 8¢ by either (3.20a) or (3.20b). Consistency requires «, < (,,
which implies (2, <X, = O(In L) as stated in (3.16). Notice that, for fixed §X, the
separation between the real parts of two consecutive eigenvalues decays to zero faster
than 1/(In L)*:

8ni*m?(f, — 12) ( 1 ) 1
~ 3 =n 3 < 5
X; (In L) (In L)

From the dispersion relation (3.22a), and given (3.20), we see that many modes
become unstable as 0 < 8¢ < 1 if

(3.23) a, —a,

(3.242)

(L) < dp<1 (In L - +x);
n

the number of unstable modes is (cf. (3.22a) with a, = 0):
(3.24b) N=0(yé¢ InL).

For voltages ¢ = ¢, + 8¢ or ¢ = ¢, — 5¢, with ¢ in the range (3.24a), a quasicon-
tinuum of eigenvalues with vanishing frequencies (3.16) crosses the imaginary axis.
The analysis of the resulting bifurcation will be presented elsewhere [5].

4. The solitary wave solution and its stability in an idealized case. Experiments
[11]-[13], [28] indicate that in a range of voltages where the steady state is unstable, a
pulse is generated at x=0 and travels along the semiconductor. The pulse is
destroyed at x = L, and the phenomenon repeated as another pulse is then created at
x = 0. When the pulse is away from the endpoints the current is constant, and we can
treat the pulse as a solitary wave riding at constant speed on a steady plateaux [18],
[1], [14]. Two of us have constructed asymptotically the periodic Gunn oscillation for
long semiconductors in a previous publication [14]. To prove the linear stability of the
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oscillation we should perform a Floquet-type analysis of the evolution problem
linearized about the time-periodic solution. Instead of doing this, we try to reach a
more modest goal: we focus our attention in the stage of a period of the Gunn
oscillation that lasts longest, i.e., when there is a detached solitary wave that moves
with constant current on a steady background field [14]. We try to prove that a
small-amplitude perturbation of this situation decays in time before the wave reaches
x=L. Even this more modest goal will prove elusive, as we shall see below.

There are four types of solitary wave solutions of (1.9) that correspond to solitary
waves of (1.5) in the limit & | 0 [18].

(a) A triangular bump with a front having slope —1 and a shock in the tail.

(b) A trapezoidal pulse with front and back as in (a).

(c) A triangular depression with a shock in the front and a slope —1 at the tail.

(d) A trapezoidal depression with front and back as in (c). In the physics
literature, pulses that rise above a baseline are called high field domains while
depressions are called low field domains.

The solitary waves of (1.5) are constructed in [1] by the asymptotic matching of
elementary solutions of (1.9) with constant J via intermediate boundary layer solu-
tions of (1.5). In the case of a triangular high field domain the relevant solutions of
(1.9) are (the other cases are similar and we will not consider them from now on):

(1) The steady state solution E = E,(J) outside the pulse;

(ii) The exact solution E =Jt —x + const. for the front of the pulse;

(iii) The traveling shock solution at the back of the pulse. The velocity of a
shock, V(E ., E _), as a function of the values of the field on its right and left, E, and
E_ respectively with E, > E_, is [1], [18]

[ 0(E) aE
E_
4.1 V(E+,E_)=E+_—E_.

Clearly we have E_=E(J) and E, should satisty V(E_, E(J)) =J for the pulse to
move rigidly. J is determined from the voltage condition (1.6):

(4.2) d~E(J)L+iE, (J)-ET.

In the limit ¢, L -, B |0 with ¢ =0O(L) and B¢ < w/4, we have a triangular
solitary wave with E,(J) ~J < 1 [14] so that (4.2) becomes

(4.3) ¢ ~1E?; therefore E, ~ V2¢.

J can now be calculated from (4.1) and (4.3), and the result confirms that we can
ignore the first term in the right-hand side of (4.2) when deriving (4.3) [14].

We now discuss the linear stability of the solitary wave whose construction has
been just sketched. This stability proof is the key to understanding the Gunn effect in
long semiconductors because the field corresponds to that of a solitary wave moving
on the steady plateaux (with constant J) for most of each period of the current
oscillation [14]. It is easy to find an instability criterion [8]. In a system of coordinates
moving with the solitary wave, 8 =x — Jt, the electric field is time-independent inside
the wave and constant outside the wave. Then a small disturbance can be written as in
(3.3) where é now depends also on the moving coordinate ¢ (see (4.4¢c) below). If the
differential impedance (3.4b) satisfies Z(0) > 0, the solitary wave is unstable [8]. A
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widespread conjecture [8], [32], [1], [3], [9], [19] is that Z(0) < O implies linear stability
of the wave. Incomplete proofs of this conjecture in the literature include Butcher
and Rowlands [8], who ignored the possibility of A being complex, and Volkov and
Kogan [32], who used the principle of the argument with an unproved implicit
assumption (see [3]; see also [4] for an application of these arguments to the stability
of the steady state which clarifies the implicit assumptions). In view of this situation,
we have attempted to solve the linearized equation without separating variables, and
have obtained only partial results.

Outside the shock and corner layers of the pulse and far from the contacts, a
disturbance from the electric field and the current corresponding to a solitary wave
moving on E (J) satisfies (3.2a)~(3.2c), where E is now

(4.42) E=E_ (J)—¢, when0<¢<E,(J)—E()),
(4.4b) E=E\(J), otherwise.

Near the contacts, (4.4b) has to be modified in an obvious way for E to satisfy the
boundary conditions. In (4.4a),

(4.40) E=x—x,—Jt,

where x =x, is the location of the shock at = 0.

We have not been able to find a direct proof of the linear stability of the solitary
wave except in a case where the disturbance vanishes outside the pulse and the
diffusivity is zero. Consider the following simple curve v(E) instead of (1.4):

(4.52) v(E)=vy—yE when E>0 (y>0),
(4.5b) 0<v(E)<v, when E=0.

Assume that the resistivities of the contacts are zero. We operate in a region

E < v,/ so that v(E) > 0. Then the field of the moving pulse is given by (4.4a)—(4.4c)

(with E(J) = 0) outside the shock and corner layers, (4.3) is an exact equation and J

is given by

¢

(4.6) J=v,— v\ = .
2

Outside the support of the solitary wave, v'(E) = +o, and the field disturbance is

zero. Inside the support of the solitary wave (3.2a) becomes (after a trivial calculation)

de de .
4.7 E+('y§—vo+1)a—§=](t).

Notice that é=é(¢&,t) because the field profile (4.4) is time-independent inside the
wave and constant outside the wave. We shall ignore in what follows the shock and
corner layers of the wave. Requiring the continuity of € to be maintained at the point
¢=FE ., where the front cuts the baseline, we obtain

(4.8) é(E, ,1)=0.
We finally pose an initial disturbance

4.9 e(£,0)=f(¢), 0<E<E,; f(EL)=0.
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Equation (4.7) is solved by the method of characteristics

(4.10) 2£,0 =f(&(&,0) + [[[(s) ds,
where
vy —J
4.11) INCRIE A—e ")+ Ee 7.
As t > », £ — (v, —J)/v and (4.10) converges rapidly:
UO -J t~
(4.12) é(¢,) —>f( + [j(s) s.
0

The disturbance in the current can be calculated from the condition (3.2¢c) so that the
integral of the field disturbance vanishes:

E, E, [t
(4.13) [P fee, v ag+ [ [(fs) agds =0,
0 0 ‘o
We change the integration variable to £, in the first integral
(4.14) e [*E0p (g dgy + E, ['f(s) ds=0.
00,0 0

Letting ¢ — %, we observe from (4.11) that both limits in the first integral in (4.14)
tend to the value (v, —J)/y and
(4.15) E(E 1) —&(0,0)=E e .

Inserting these in (4.14) and dividing by E, we obtain

UO_J t~
(4.16) f( )+fj(s) ds—0 ast— .
Y 0

Combining (4.12) and (4.16), we obtain that the disturbance é(¢,¢) — 0 exponentially
fast as t — o. This proves the linear stability of the solitary wave in the idealized case.
Extending this proof to the general case involves studying the linearized equation also
in the shock and corner layers of the wave [1], and, more importantly, using a general
v(E). Further work in this direction is now under way.

5. Discussion. In this paper we have constructed the steady state of the classical
drift-diffusion model of Gunn effect in GaAs, asymptotically as L — +», 6 |0
(L& |0). We have analyzed the linear stability of the steady state with vanishing
diffusivity both for finite and for infinite sample length. The diagram ¢/L versus L of
Fig. 3 shows that above a minimal length there is a voltage interval (¢,,¢,) outside
which the steady state is linearly stable. The width of this interval grows with L, and
its lower end, ¢,(L), tends rapidly to the value E,(J,)L as L increases. These results
for infinite L confirm the criterion that for the steady state to become unstable, J has
to be very close to J,, the current at which (for high enough contact resistivity p) the
velocity v(E), and the contact characteristic curve E/p intersect [28].

For large L, our work yields expressions for the critical voltages ¢, and ¢,, the
frequencies of the eigenmodes that become unstable, and the dispersion relation
between these frequencies, (¢ — ¢,) and the real part of the eigenvalues which
provide the growth rate of the instability. Previously most of the results were obtained
assuming a piecewise linear velocity curve, and no dispersion relation was available.
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The results near the onset of the instability ¢ = ¢, depend on the shape of the
velocity v(E) for E € [E|(J,), E,(J,)], a region where a N-shaped v(E) (such as (1.4)
and a v(E) that saturates for large E are similar. Thus our onset results are also valid
for a saturating velocity curve [28], [29]. Where our results are specific of a N-shaped
v(E) is near the end of the instability, ¢ = ¢_. A separate analysis is necessary to give
asymptotic estimations of ¢, and the corresponding dispersion relation for saturating
velocity curves.

The dispersion relation shows that the eigenvalues (of the problem linearized
about the steady state) that acquire a positive real part have a vanishing frequency,
cross with positive speed the imaginary axis and form a quasicontinuum as L — +,
This suggests that the steady state loses stability via Hopf bifurcation, which will be
confirmed in a different paper [5S].

We have also considered the linear stability of the solitary wave moving with
constant current on the steady state, which is the situation for most of each period of
the Gunn oscillations. We have proved stability of the wave for an idealized case of
zero diffusion and a piecework linear velocity curve.

Appendix A. Proof of Lemma 1. To simplify the writing of the equation, we shall
omit explicit mention of the J-dependance of E(x;J) in this Appendix. To derive
(2.10a) we write the solution of (2.1) and (2.2) as

ds
E(x)
=pJ—E +J —

e () pr J—v(s)
from which

J E,—E(x) J E(x)—E
(A.D) x=pJ—E(x)——1In -2 — — — In|- 1

U2 E,—pJ ol p] —E,

U/—l Ul—l 1
+JfE(x) 2 " 1 _ ds.
pJ s—E, s—E; v(s)-J

As J ~J,, the profile of E(x) will be a plateaux at field E,(J) (starting at x =0)
joined through a transition layer of width O(1) to another plateaux at field E,(J) that
reaches x = L (we ignore the diffusive boundary layer). The integral in (A.1) is finite
even when E(x) - E, and/or pJ - E,. Now let X €(0,L) be the “center” of the
transition layer defined so that E(X) = E,, fixed. Then

J E,—E(x) J E(x) - E,
(A2) x—-X=EX)-EX)——In|—7— |- In| =
v, \E,—EX)| v, |\E(X)-E,
EGo) U/—l U/—l 1
X 2 1
+J + - ds.
fE(X) s—E, s—E v(s)—]) g

Equation (A.2) can be used to approximate the stationary solution at the two ends of
the transition layer between E,(J) and E(J). As (x —X) - —, we leave the
transition layer and E(x) ~ E,(J). By inserting this value at the second logarithmic
term and at the upper limit of the integral in (A.2) and solving the resulting
expression for E(x), we find (2.10a), where the current J is close, but not identical, to
J.. (2.10b) is found similarly by noticing that E(x) ~ E\(J) as (x —X) — +,
Equation (2.9b) follows from (2.10a) where we set x =0, E(0) = pJ = pJ, + p(J —
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J.), and
(A32) E,(J) ~pl.+ E5(J)(J—1.) = pl], I
Ja ~ + ! —_ = + —_—,
2 P c 2\Y¢ c P c Ulz(Ez(Jc))
J—1. vy X
(A.3b) p(J—=J)~—— —c exp .
U2 ‘]c

Notice that, to leading order, we can substitute J=J, in ¢, and in the exponential
term of (2.10a), (2.10b), and (A.3b).
To derive (2.9a), we decompose the integral of the field in (2.3) as

(A.4) ¢=f0X_A"E(x)dx+/X

E(x)dx+[X+A"E(x)dx+[L E(x) dx,
X—Ax X

X+Ax

choosing 1 < Ax < X. By using (2.10a) and (2.10b), we obtain

_Ax c,; J vhAXx vh X
(A.52) fX 4 E(x)dx~E,(X—Ax)+ ah exp 2 —exp 2 ,
0 v J J

(A.5b)

J ,A ! L_X
fL E(x)dXNEl(L_X_Ax)JFCi,“(eXP[—Uljx}—exp[_u])‘
X+Ax

v} J

We now lump the exponentially decreasing terms of (A.5a) and (A.5b) into an o(1)
error term and substitute these expressions in (2.3). The result is

(A.6)

¢=E1L+(E2—E1)X+f; . [E(x)—Ez]dx+fXX+Ax[E(x)—El]dx+o(1).

Finally, we change variable from x to E in the integrals of (A.6) by means of (2.1),
and use E(X—Ax)~E,(J), E(X+Ax)~E(J), as Ax> 1. Inserting (A.3a) for
E,(J) and a similar relation for E,(J) in the result, we obtain (2.9a). Notice that all
the improper integrals in Lemma 1 are convergent.

Part (b) of the Lemma can be proven with similar arguments.

Appendix B. The linear stability of the steady state in the limit & | 0. In this
Appendix we show that the small diffusivity results in additional eigenvalues A of the
linear stability analysis which are of order 1/8 and generically negative. In fact for
the boundary layer to have a large effect on the eigenvalues, we have to assume that
A =0(1/6), so that the linear stability problem

9% dlv(E)e]
_+—

(B.1a) -5 (B ),
(B.1b) fLé(x; A dx=0,

0
(B.1c) 200:0) = 8L ) = —2

1+ Ap
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can be approximated in the boundary layer by

(B.2a) - azazéi” e E%L sy, e
' ax* ax e
3%, dlv(E)é,] .
(B.2b) T + pY: = —(A8)é,;,,

with zero-data Dirichlet boundary condition at ¢=0 (x=L) and as {=(x—L)/8 |
— o (leaving the boundary layer). In (B.2), E = E,,(£) is given by (1.16). Outside the
boundary layer, we can approximate (B.1a) and (B.1c) by

(B.3) A~
so that j solves (B.1b):

JL 0 . X L
(B.4) —~ —sf_me,.,,(g,,\)dg, f=——.

From this expression it is clear that j=O(1/L), which is consistent with having
neglected it in (B.2).

We now return to (B.2) on the negative half &axis with Dirichlet data. By a
standard change of variable we convert (B.2a) in Schrédinger’s equation,

d*f
(B.5a) —BZW +w(x;8)f~ —(A8)f,
1
(B.5b) F(x; A) =é(x; )\)exp{— 2—6[U(E)dx},
(B.5¢) ('8—1(E2 18’(EdE
5c w(x; )=ZU )+§u )E.

The number of positive A (i.e., of negative eigenvalues of the Schrodinger’s equation
(B.5a) with Dirichlet data) can be estimated by the Courant—Weyl integral [26]

1 1 V21 (E)IQ(E) — v(E)
(B.6a) N~;T3fw<0\/—w(x,3)dx~5;fw<0 3 ,
(B.6b) Q(E) = Q(E, E)) = [ v(s) ds,

1

as 8 |0 (cf. (1.15)). In the numerical calculations that we have performed for typical
parameter values, all the large eigenvalues of (B.1a)-(B.1d), A= 0(1/9), turned out
to be negative, thereby corresponding to stable modes. For A = 0O(1), the boundary
layer yields an Q(8) correction to (B.1b) corresponding to a negligible O(8)-correc-
tion to A. This justifies ignoring the boundary layer in the stability calculations of this
paper and also in the literature [28].

Appendix C. Proof of Lemma 2. Setting x =0 in (2.10a) we have
vy X
T

(Cc.1) pJ ~E,(J)—c¢, exp(

Then a small variation of X, 8X < 1, provokes a much smaller variation of J,
8J < 8X (see below). Subtracting (C.1) from the corresponding relation for X = X_ +
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86X and J=J+ &J, we find

LV vy X
(C2) [p—EJ)]8T ~ — Vi exp T 5X.
We now differentiate the identity
J = U(Ez(J))

with respect to J obtaining
(C3) E,(J) =1/v}.
Inserting (C.3) in (C.2) and using (3.15), we find

vi(E,—E;) sx

4 &J ~
(C4) 2

This relation has been derived by ignoring terms of the order of exp(v), X, /J)8J as
compared with the retained term of order 6.X times the exponential. This is justified
by the result (C.4). We now subtract (A.6) evaluated at ¢ = ¢, + 8¢ from (A.6)
evaluated at ¢ = ¢,, thereby finding

(C.5 d¢p~E L8]+ (E,—E)8X~2(E,—E)) 8X,

by (C.4) and E(J) = 1/v}, which follows from J = v(E(J)). Equation (C.5) is (3.20a).
Repeating step by step the previous derivation for ¢ = ¢, — 8¢ corresponding to
X=X_+ 8X, we find (3.20b).
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