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Abstract—A discrete drift model of sequential resonant tunneling in weakly-coupled doped or undoped
GaAs/AlAs superlattices (SL) under d.c. or d.c. +a.c. voltage bias and laser illumination is analyzed.
In agreement with experiments our model shows an oscillatory I-V diagram for large enough values
of the doping and/or laser illumination, multistability and hysteresis between stationary solutions and
self-sustained time dependent oscillations of the current. Numerical and asymptotic analyses of the model
show that these current oscillations are due to the formation, motion, annihilation and regeneration of
negatively charged domain walls on the SL. For appropriate d.c. + a.c. voltage bias, chaotic current
oscillations with loss of spatial coherence of the electric field will appear due to random nucleation of

domains in the SL.

The formation of stable electric-field domains in
doped and undoped semiconductor superlattices has
been intensively investigated both experimentally[1-4]
and theoretically[5—8]. Unstable domain distributions
in superlattices, however, have only been discovered
very recently. Damped current oscillations are present
in undoped superlattices under large photoexcitation
[4], and, for certain values of the doping, self-
oscillations of the current appear(9].

In this work we present additional results for a
recently proposed discrete drift model[6] that accounts
in a satisfactory way for the stationary and dynamical
properties of semiconductor superlattices, paying
special attention to the connection with the available
experimental results. We also stress the convenience
of studying the continuum limit of the model in order
to gain some insight on the dynamical behavior of the
system (preliminary results for the continuum limit
including an equal-area-rule for the velocity of domain
walls were announced in Ref. [8]). Finally, we find
that when the system is additionally driven by an a.c.
field, new interesting dynamical phenomena appear,
namely, chaotic motion of electric field domains
due to random nucleation of charge monopole waves
over the whole structure[10]. The maximum number
of monopoles that can be simultaneously present in
a chaotic situation varies from two to three with the
number of wells of the SL. This seems to be related
with the loss of spatial coherence and the fractal
dimension of the attractor. For long enough SLs, the
fractal dimensions of the chaotic attractors do not
change appreciably with the SL length, which implies
that the predicted chaos depends on few effective
degrees of freedom.

We consider a set of weakly interacting quantum
wells characterized by values of the electric field E;
the electron densities n; and the hole densities p; with
Jj=1,..., N denoting the well index.
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This mean-field-like approach is justified because
for the high voltages involved the tunneling process
is sequential and the electron loses coherence before
leaving the well. Besides, the relevant time scale for
the oscillations (~0.1 us) and the dynamics of the
electric field domains in a weakly coupled SL are
much larger than those for the tunneling process
between adjacent wells (~1ns) and the relaxation
from excited levels to the ground state within each well
(~ 1 ps). Therefore, a single quantum well reaches a
situation of local equilibrium between two consecutive
tunneling processes.

The one-dimensional equations governing the
dynamics of the system are the Poisson equation
averaged over one SL period, Ampére’s equation
for the balance of current density J (hole current is
neglected), a rate equation for the holes, and the
voltage bias condition
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where e, /, r and ¢ are the electron charge, superlattice
period, electron-hole recombination rate and effective
dielectric constant, respectively. Ny, y and V are
external parameters that represent the doping, photo-
generation rate and external voltage. The effective
electron velocity v(E) (proportional to the tunneling
probability) exhibits maxima at the resonant fields
for which the adjacent levels of neighboring wells are
aligned[6]. Those resonances are purely quantum
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mechanical phenomena that have to be included
necessarily in our otherwise semiclassical model.
Notice the importance of the negative differential
conductance (NDC) region in the velocity curve
giving rise to current instabilities in the SL.

The boundary condition at the first contact,
e(E,—E)/(el)=n —p, —Np=96, allows for a
small negative charge accumulation in the first wall
(0 « Np). The physical origin of é is clear for an
n*-n-n* structure: due to the different electron
concentrations at each side of the first barrier, some
charge will be transferred from the contact to the first
quantum well. This creates a small dipole field, which
cancels the electron flow. For a p-i-n structure a
flat boundary condition (6 = 0) which avoids charge
accumulation should be used[4].

The model eqns (1)—(4) have been solved numer-
ically and the results will be presented below in
dimensionless form by adopting as the unit of field
the value E, _, = A¢,/(el), with A¢|, being the energy
separation between the first and the second electron
subbands [the maximum of v(E)]. This yields the
characteristic charge density ny = ¢E, _,/(el) used to
normalize the carrier and the doping concentrations.
Finally for J, y and V the units are en,v(E,_,),
rn} and E, _, NI, respectively.

The two most common experimental probes used
to investigate the behavior of the SL are current and
photoluminescence measurements. The first one can
be time resolved (in the 0.1 ns regime), time averaged,
with photogenerated carriers or with electronic
doping of the sample. All of these possibilities can
be described within our model. The second one (time
resolved or averaged) gives an integrated information
about the electric field on the wells over the whole
sample, by means of the Quantum Confined Stark
Effect{3].

In Fig. 1 we plot the calculated current vs the
applied d.c. voltage for three different laser powers
(y=0; 1 x 1072 and 4 x 10~?), obtained using the
velocity vs field curve shown in the inset, and which
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Fig. 1. Caiculated /-V characteristic for three different
photoexcitation intensities as indicated and doping v =0.1.
Inset: dimensionless v(E) curve used in the simulation.
This curve coincides with the /—-V characteristic for v < 0.04.

is related to the experimental current—voltage char-
acteristic[9]. Since we are interested in depicting the
self-sustained current oscillations under the fields
above E, _,, we have ignored the small maximum of
v(E) near E =0 correspondent to miniband conduc-
tion. The calculated current without photoexcitation
exhibits oscillations as observed in the experiment.
The time integrated /-V characteristic has been
obtained by averaging the value of the current over
one period of the oscillation. As in the experiments,
the fine structure of the /-V curve appears when
additional carriers are introduced by photoexcitation,
that means the oscillations die out under higher
concentration of carriers.

Let us now consider the results for doped SL
without photoexcitation. For this case we found
undamped current oscillations for appropriate values
of the bias only for the doping density v between (.04
and 0.15. Below 0.04 the SL evolves from any initial
condition to a uniform state with the same constant
values of charge and field in each well. Above
v = 0.15 stable electric field domains are formed. This
limit can also be described by means of a discrete
mapping as in Ref. [6]. For in-between values, we find
undamped oscillations of frequency ~10 MHz in
close agreement with the experimental results for
an N =40-well 9 nm GaAs/4 nm AlAs SL[9]. Within
the NDC region the only stable solution corresponds
to the undamped current oscillations. However,
outside the NDC region, we find a narrow region
of bistability and hysteresis between the undamped
current oscillations and a stationary solution.

In Fig. 2(a—e) we plot the calculated electric field
profiles at different times of one period of the current
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Fig. 2. Electric field profiles and absolute value of the

current during one time-period of the oscillation (calculated

frequency: 10 MHz). (a)—(e) Electric field profiles at the

times marked with arrows in (f). The digits under the curves

indicate the number of wells in the high field region

(E > 1.3). Insets in ( f): current oscillations showing several
complete periods.
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oscillation, which is depicted in Fig. 2f, for a dimen-
sionless doping density of v = 0.1 (corresponding to
the average over the SL Ny 2 1.15 x 10" cm~3) and
no laser illumination. One can see that a larger current
corresponds to a larger extension of the low-field
domain, whereas low current indicates a larger
extension of the high-field domain. This agrees very
well with the experimental results for a ¥ = 40 well
9 nm GaAs/4 nm AlAs SL[9].

The self-sustained oscillations are due to a recycling
(deep inside the SL) and motion (toward the end of the
SL) of the domain wall (charge monopole) separating
low and high-field regions. The recycling is more
clearly seen in Fig. 3a, where the time evolution of
the electron density is represented: the peaks of the
electron density show where the centers of the domain
walls are. During each period a domain wall is formed
inside the SL. It then moves forward towards the
corresponding contact. Depending on the applied
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Fig. 3. Spatio-temporal distributions of electron density in

a doped SL without photoexcitation for: (a) pure d.c. bias

on a N=40 SL, (b) d.c. +a.c. bias with a =0.09 and
N =40, (c) d.c. +a.c. bias with a =0.12 and N = 200.

voltage, it may or may not reach the end of the SL
before it disappears and another monopole is formed
starting a new period of the oscillation. Simulations
clearly show monopole recycling with two monopoles
coexisting during some part of one current oscillation
period (see Fig. 3a). The frequency of the oscillation
is mainly determined by the number of quantum wells
the monopole moves across and by the average drift
velocity[8]. The amplitude of the current oscillation is
proportional to the difference between the maximum
and minimum of the velocity curve.

Monopole recycling can be studied asymptotically
and numerically for long SLs[8]. Instead of an appar-
ent deformation of the domain wall as in Fig. 2 (c, d),
a spatially-extended flat region with intermediate
field appears between the low and high-field domains
during part of each oscillation period. In addition,
the small charge accumulation at the first well plays
an essential role in the development of the current
oscillations. The field behind the monopole is uni-
form in space, up to a small correction of the order
of 6 near the boundary. When the current reaches
its maximum, the field behind the monopole takes
the values on the NDC region, and those corrections
increase exponentially in time, giving to a new mono-
pole. For very long SLs an asymptotic calculation
shows that the monopoles are formed and destroyed
in time scales much shorter than their travelling time
towards the end of the SL. Ignoring these fast stages
of the oscillation, the values of the electric field on the
domains separated by a domain wall are approxi-
mately given by the zeros of ev(E)Np — J. As there
are three such zeros J/(eNp) between the maximum
and minimum of the velocity curve, then we may have
coexistence of, at most, two monopoles separating
three electric field domains.

Having found a system with a natural oscillation
due to traveling-wave motion, it is natural to ask
whether harmonic forcing would lead to chaos with
spatial structure. The answer is affirmative. We start
with a uniform initial field profile and solve the
equations for d.c. bias. After a short transition,
the self-sustained oscillations set in and we switch
on the additional a.c. microwave signal of relative
amplitude ¢ and frequency f;, so the net a.c. +d.c.
voltage will be V{1 + a sin(2nf;1)}.

Our main result is that the competition between the
natural oscillation due to monopole dynamics and
the forcing gives rise to narrow windows of spatio-
temporal chaos for appropriate values of ¥, a and f;
(see also Ref. [10]). Let us fix the ratio between the
natural frequency f; and the driving frequency f; at
the golden mean (,/5-1)/2, and the voltage ¥ at 1.2.
The loss of spatial coherence in the chaotic regime can
be seen in Fig. 3b, where the electron concentration
as a function of time and well index is presented for
the case of d.c. + a.c. driving (time is in units of the
period of the a.c. driving, Ty=1/f;). For N =40
wells at most two monopoles are simultaneously
present on the SL: the maximum distance between
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Fig. 4. Bifurcation diagram of the current at times mT, (for sufficiently large m) vs the driving-force
amplitude, for the golden-mean ratio between natural and driving frequencies. Windows of chaotic
solutions are marked by arrows.

these monopoles is necessarily small. We have
studied the influence of the number of SL wells on
the spatial structure of chaotic solutions. For longer
SLs (N > 80), we observe coexistence of up to three
monopoles connecting four electric field domains
during certain short time intervals; see Fig. 3c.
Nucleation of monopole wavefronts occurs more
frequently: in addition to long-living waves traveling
over almost the whole SL, there are short-living waves.
The two types of waves are distributed chaotically in
space and nucleated both at the beginning and deep
inside the SL. We have never observed more than
three simultaneously present monopoles, even for
unrealistically long SLs (N = 500). We speculate that
the fast monopole nucleation is responsible for the
loss of spatial coherence typical of the chaotic situation
seen in Fig. 3c. If this is true, the fractal dimension
of the chaotic attractor is related to the number of
monopoles that can be simultaneously present on the
SL: the more monopoles which coexist, the larger the
dimension should be. Then we expect that the fractal
dimensions of the chaotic attractors increase with SL
length, and tend to saturate for SLs with more than
80 wells. This is confirmed by numerical simulations.

To detect and visualize the chaotic regions in
parameter space, we adopt as Poincaré mapping (for
cach value of a) the current at times m7T,, m =0, 1, ...
(after waiting enough time for the transients to have
decayed)[10]. The result is the bifurcation diagram

in Fig. 4. The chaotic regions marked by arrows
are interspersed with locking to periodic regimes. To
prove that statement we have computed the largest
Lyapunov exponent and found it positive within
chaotic windows and negative outside. Notice the
period-doubling sequences that point to the existence
of chaos near their accumulation points. Quasiperiodic
routes to chaos have been found at the first and last
windows, marked with arrows in Fig. 4, where the
largest Lyapunov exponent was found to be zero.
Notice that the period-2 orbits span the widest par-
ameter region from the narrow chaotic band around
a =~ 0.01 up to the next chaotic region at a = 0.09.
For a = 0.145 the solution is attracted to the period-1
orbit with the driving frequency f;.

In conclusion, our model describes in a satisfactory
way, the stationary and dynamical properties of a
weakly coupled semiconductor SL under a wide range
of conditions. Low-dimensional chaos with loss of
spatial coherence is expected to occur under appro-
priate d.c. + a.c. voltage bias for currently available
n-doped GaAs/AlAs samples forming n*-n-n*
diodes[9].
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