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Abstract

The H-theorem and the asymptotic behavior for the Vlasov-Poisson-Fokker-Planck system are found. On bounded
domains, boundary conditions defined by a scattering kernel are considered. The distribution function evolves to a Maxwellian
solving the Poisson-Boltzmann-Emden equation with Dirichlet or Neumann boundary conditions.
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We have proved an H-theorem for gaseous systems
described by the Vlasov-Poisson-Fokker-Planck
(VPFP) system. Finding an appropriate Lyapunov
functional allows us to show that initial conditions
evolve to the stationary solutions of the problem.
The VPFP system is a kinetic description of a gas of
particles whose momenta change only slightly during
collision events and which are subject to the self-
consistent field created by the particles themselves.
Two typical examples follow.

(1) Electrostatic case: slow momentum relaxation
of a small admixture of heavy positively charged ions
in a light gas of neutral particles (which is considered
to be in equilibrium). The low density of the heavy
particles implies that their collisions with one another
may be neglected, whereas their momenta change lit-
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tle when colliding with the light particles of the en-
vironment. Under these conditions the collision term
in the kinetic equation may be approximated by the
Fokker-Planck form [1].

(ii) Gravitational case: a self-gravitating system
undergoing diffusion in velocity space due to the fluc-
tuations between the actual force acting on each par-
ticle and the mean-field force given by the Poisson
equation (soft collisions) [2].

These cases are described by the system

%—’; (0 V) f = Vo [(Vad+B0) f] - oV2f =0,
(1)
—V2(1,x) = 0p(f)(1,x). (2)

Here f(t,x,0) > 0 is the distribution function, and
@(t, x) is the internal (mean-field) potential (electro-
static if @ = 1 or gravitational if § = —1; p(f) (t,x) =
J f(t,x,v) dv is the charge or mass density). We do
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not consider the effect of an external potential on our
system for the sake of simplicity although our results
could be extended also to that situation. The term
div.(—pBuvf) represents dynamical friction [2], and
the friction and diffusion coefficients obey the Ein-
stein relation: o/8 = kgT/m, where kg is the Boltz-
mann constant, 7 the temperature of the thermal bath
and m the mass of the particles.

The system either extends to infinity (and then f
and & decay to zero) or it is inside some enclosure £2
with general boundary conditions for f on its bound-
ary af2,

ft,x,v) =/R(t,x;u,v*)f(t,x,u*)du*. (3)

I

We consider that @ is constant on the boundary d/2:
for a connected boundary this condition corresponds
to a perfect conductor in the electrostatic case. The
case of disconnected boundaries with different con-
stant values of @ is also included. Most of our re-
sults also hold if @ is constant on parts of 442 and
the normal component of the internal field vanishes
on the rest (Dirichlet-Neumann boundary condition).
(3) is an integral relation between the distribution
of particles coming out of an infinitesimal section of
the boundary at a given time, with velocity v, and
the density of the particles impinging upon the same
boundary section. (We use the notation '}, = {v €
R3 such that sgn(v-n(x)) = +1,x € 42} and 'y =
{(x,v) € 302 x R? such that sgn(v - n(x)) = £1},
where n(x) is the unit normal outward on the bound-
ary of the domain {2 at x € d42). The scattering kernel
R(¢t, x;v,0™) has the following properties [3]:

(1) R is always positive.

(11) R satisfies the following normalization condi-
tion for any v* € I'%,

o™ n(x)| = /R(t,x;u,u*)lu~n(x)ldu. (4)
I
(iii) As a consequence of the reciprocity principle

(see Ref. [3]), the relation

M(v) =/R(t,x;u,u*)M(u*)du* (5)

"

1

holds for any v € I'*. M(v) = Q2wo/B)/?
x exp(—B|v|2/20) is the Maxwellian at the wall with
the temperature o/ of the thermal bath surrounding
the particles.

Notice that the classical cases of specular and re-
verse reflection (“bounce-back” boundary condition
[4]) are included in this definition. There are several
works devoted to the construction of more realistic
scattering kernels which satisfy the above conditions
(see Section 8.4 of Ref. [3] and references therein).
The physical relevance of properties (i)-(iii) is also
discussed there.

By integrating the VPFP system and using these
boundary conditions, one can prove a number of bal-
ance laws for the energy, entropy and mass. The later
is the continuity equation

ap(f)
at

+ V. j(f)=0, j(f):/ufdu. (6)

R}

Also, the boundary conditions on f yield interesting
properties for the moments of f on 842. For instance,
condition (ii) implies that j(f) - n is zero on the
boundary 2. Notice that this result is not physically
realistic in the electrostatic case: if the boundary is a
perfect conductor and our system is out of equilibrium,
we would expect a nonzero normal component of the
current density on the boundary corresponding to par-
ticles leaving or entering {2 through the contacts. To
discuss this case we would need more general bound-
ary conditions for f and it is unclear to us whether an
H-theorem could then be proved.

It is well known that the relative entropy between
f and the stationary solutions of the Fokker-Planck
equation is the appropriate Lyapunov functional used
to derive the H-theorem [5,6]. In contrast to the
usual Fokker-Planck equation, which is linear in f,
the VPFP system is nonlinear and the relative entropy
is not a Lyapunov functional. Examples of nonlin-
ear Fokker-Planck equations with known Lyapunov
functionals include models of synchronization of os-
cillator populations with mean-field coupling [7-9].
These examples have drift terms that depend linearly
on a moment of the distribution function, which is
also the case for the VPFP system. Thus, we derive
a Lyapunov functional for the VPFP system using
similar ideas [7]:
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(1) Define a relative entropy with respect to a non-
normalized “stationary” distribution

(1) = //flog(f/f) dxdv, )

R}

where f satisfies the equation (v-V,) f—V,-[(V @+
Bu) f1 — oV2f = 0, with the internal potential &
given by solving (2) with the exact distribution f. f
is given by

fltx,0)
12
=exp[—§(%—+¢(t,x) —%M(ﬂ)}, (8)

where M = [ fdxdv is the total mass of the system.

(ii) Find u(t) so that [ f(dlog f/ar) dxdv =0.

(iii) Show that n'(¢) < 0.

(iv) Show that %(¢) is bounded below.

After integrating by parts, using the Poisson and
continuity equations and taking into account that the
surface integral f(m(aqb/at)n(x) -V @ dS(x) is zero,
Step (ii) of the previous procedure yields (up to an
additive constant)

w(t) =16 [ 1,000 x. 9)
2

By inserting Egs. (8) and (9) in (7), we see that
7n(t) is the free-energy functional,

n(:)=//flogfdxdu+—2%//|u12fdxdu

7 R} n R?

Bo 2
+ 2U/|Vx<1>(t,x)\ dx. (10)
{2

We now check (iii). By taking the derivative of n(t),
we find 7'(1) = [(df/at) log( f/f) dxdv, plus two
terms that are zero due to mass conservation and Step
(ii) in the definition of (7). We now insert the VPFP
system (1) and (2), written as

d . ~ -
a—{ = g div, (Vi.f— V. log(f) — J;ZVX log(f))

— - v)f
= o div, Kvl. log(f/ f) — %V.x log(f)) f}
—v- fo,

into the expression for »’(z) and integrate by parts
(retaining the boundary terms on ¢42). The result is

(1) = —cr//fIVplOg(f/f)Izdxdv

o R
—//(u-n)f(logf—logf)deu
40 R3
+§f/f(vxlogfvlv]0gf
2 R

— V,logf -V, 10gf) dxdv.

We now use Eq. (8), the divergence theorem and the
definition of the current density j( f) to obtain

7 () = -0 / / IV log( £/ ) dxdo

N R3
@
~/n~j(f)<1+%—§0—)ds
an
~//v-n<£—}u|2+logf>fd5du. (11)
20
an g

(See Ch. 6 of Ref. [6] for similar manipulations.) The
first term in (11) is nonnegative, while the second term
is zero because j( f) - n=0 on d{2. By using Jensen’s
inequality one can prove that the third term in (11) is
also nonnegative (see p. 241 of Ref. [3]; notice that
the authors denote by n(x) the inward normal to 442,
contrary to our notation). Of course this term is zero
for the case of infinite space with natural boundary
conditions. Thus we have shown that »'(¢) < 0. That
y(t) is bounded below follows from the inequality
alog(a) 2 a—1 (forany a > 0) and conservation of
mass if exp[ —B®(t, x) /o] is integrable. In this point,
the electrostatic and gravitational cases are different:

— Electrostatic case. By using the maximum princi-
ple on the Poisson equation (2) with a positive right-
hand side, it is straightforward to show that & is always
positive. Thus, the integrability of exp[ —B®(t, x) /o]
in bounded domains holds.

- Gravitational case. In order to show the bounded-
ness below the free energy, we must assume that the
potential energy of the system, i.e.,
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/]V‘vd?(t,x)l2 dx,
0

remains bounded in time.

These results are proved rigorously for bounded (2
in Ref. [10].

We now prove that the distribution function tends
to stationary states as t — oo. Given that 5(t) is a
Lyapunov functional, time sequences of f will tend
to a function foo(t,x,v) such that ’(t) = 0. (11)
then implies that fo,/f cannot depend on v. Hence,
foolt,x,0) = exp(—pB|v|*/20) g0 (t, x). Inserting
this expression in the VPFP system we have

J
80 = U (vxgoo + ggoovx¢oo)»

ot

where @, is the solution of the Poisson equation (2)
associated to p( foo ). AS goo (£, x) does not depend on
v, the right-hand side is a linear function of v and the
left-hand side is independent of v; this is contradictory,
unless both sides vanish. Hence we have dgo./dt =0
and V2o + (B/0) g0 ViPoo = 0, which yields the
following stationary solution of the VPFP system with
mass M,

foo(x,0) = (—B‘

exp{—(B/) [3|v]* + Poo(x)1}
fnexp[—(ﬂ/a)dioo(x')] dx’

21r0’> =32

Here @,.(x) solves the Boltzmann-Poisson-Emden
problem [11]

exp[—(B/0) P
[ expl—(B/o)Pc] dx’

Vi, =M (12)

with boundary conditions @, = O on 442 (or Neumann
boundary conditions).

The existence properties of the stationary prob-
lem (12) with Dirichlet boundary conditions depend
strongly on the interaction type.

(i) Electrostatic case. In this case the correspond-
ing Euler-Lagrange functional is strictly convex (see
p. 140 of Ref. [11]). As a consequence, we have
a unique possible steady state. We conclude that the
asymptotic behavior of the VPFP system is given by
the unique stationary limit.

(ii) Gravitational case. Using Eq. (12) the function
u = —(B/o)® satisfies

eu

Au_afne“dx' (13)
with Dirichlet boundary conditions, where a =
(B/0) M. Whether Eq. (13) has solution(s) depends
strongly on the topology of the domain {2 (see Refs.
[12,13]). In fact, if §2 is the unit ball B(0,1), we
have the following properties:

— There exists a value of the parameter @, such that
Eg. (13) with Dirichlet boundary conditions has at
least one solution for any 0 € @ < a, and no solution
for & > a,. In the latter case the potential energy of
the system is not bounded, i.e,

'lim /led)(t,x)lzdx = oC.
Q

- For @ = g =2meas[dB(0, 1)], Eq. (13) has in-
finitely many bounded solutions (starting with a min-
imal one), and a unique unbounded radial solution
u=U(x) = -2loglx|.

- For « small enough, the solution is unique.

On the other hand, if {2 is an annulus, Eq. (13) has
at least a solution for any value of the parameter «
(see Ref. [12]).

When « is such that (13) has more than one solu-
tion, it is an open problem to determine the dynami-
cal behavior of the distribution function f(z, x,v) as
t approaches infinity. For instance, we do not know
whether it is possible for two different time sequences
of the distribution function to approach different sta-
tionary states.

The results reported in this paper can be made math-
ematically rigorous as we will explain elsewhere [ 10].
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