
PERIODIC GENERATION AND PROPAGATION OF TRAVELING
FRONTS IN DC VOLTAGE BIASED SEMICONDUCTOR

SUPERLATTICES∗

LUIS L. BONILLA† , MANUEL KINDELAN† , MIGUEL MOSCOSO† , AND STEPHANOS
VENAKIDES‡

SIAM J. APPL. MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 57, No. 6, pp. 1588–1614, December 1997 005

Abstract. The continuum limit of a recently proposed model for charge transport in resonant-
tunneling semiconductor superlattices (SLs) is analyzed. It is described by a nonlinear hyperbolic
integrodifferential equation on a one-dimensional spatial support, supplemented by shock and en-
tropy conditions. For appropriate parameter values, a time-periodic solution is found in numerical
simulations of the model. An asymptotic theory shows that the time-periodic solution is due to
recycling and motion of shock waves representing domain walls connecting regions of the SL where
the electric field is almost uniform.
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1. Introduction. Self-sustained oscillations of the current have been observed
in recent experiments on n-doped weakly coupled semiconductor SLs under dc-voltage
bias along the growth direction [16]. The main charge transport mechanism is quan-
tum resonant tunneling through the SL [11, 17, 12, 21, 22, 23]. Similar but damped
oscillations have been reported earlier in undoped SLs subject to laser photoexcitation
[20]. In both cases a phenomenological discrete drift model proposed by one of the
authors [6] explains the oscillations in terms of the formation and dynamics of electric
field domains, i.e., regions in space in which the strength of the electric field is nearly
uniform. These phenomena are thus examples of time-dependent pattern formation
in resonant-tunneling SLs, a scarcely explored area of semiconductor physics.

We shall study asymptotically and numerically the self-sustained oscillatory solu-
tions of the continuum limit of the model that applies when the number of quantum
wells in the SL is large or, equivalently, when the SL is long. The continuum limit of
the model, to be derived below, is given by the equations (see [4])

∂E

∂t
+ v(E)

(
1 +

∂E

∂x

)
= I,(1.1)

1
L

∫ L

0
E(x, t) dx = φ.(1.2)

The unknowns in these equations are the current density I(t) and the electric field
E(x, t) on a one-dimensional SL 0 < x < L. The velocity v(E), shown in the inset
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†Escuela Politécnica Superior, Universidad Carlos III de Madrid, Butarque 15, 28911 Leganés,

Spain (bonilla@elrond.uc3m.es). The research of these authors was supported by DGICYT
grants PB92-0248 and PB94-0375 and EEC Human Capital and Mobility Program grant ER-
BCHRXCT930413.
‡Department of Mathematics, Duke University, Durham, NC 27708. The research of this author

was supported by Army Research Office grant DAAH04-93-G-0011 and National Science Foundation
grant DMS-91-03386.

1588



TRAVELING FRONTS IN SEMICONDUCTOR SUPERLATTICES 1589

FIG. 1. (a) Time evolution of the electric field profile on the SL using the velocity curve shown
in the inset. (b) Charge density profiles, ∂E(x, t)/∂x, showing the location of the IL for different
times. The total current density versus time is shown in the leftmost inset, in which we have
marked the times corresponding to the profiles depicted in part (a). The rightmost inset shows
clearly a monopole with a right tail.

of Figure 1a, is a positive function for E > 0 having two peaks at E = 1 [v(1) = 1]
and E = EM > 1 [v(EM ) = vM > 1] separated by a minimum at E = Em ∈ (1, EM )
[v(Em) = vm < 1]. The constant φ is a control parameter proportional to the dc-
voltage bias. The self-sustained oscillations are stable time-periodic solutions that
appear for 1 < φ < Em; see the oscillation of the current density in the inset of
Figure 1b. Equations (1.1) and (1.2) are to be solved with the boundary condition
[4]:

∂E(0, t)
∂x

= c > 0.(1.3)

Equation (1.1) is hyperbolic, so its solutions will in general develop shock waves. We
supplement the model with the shock condition [4]∫ E+

E−

(
1

v(E)
− 1
V (E+, E−)

)
dE = 0(1.4)

and the entropy condition [4]

v(E−) ≥ V (E+, E−) ≥ v(E+).(1.5)

Here V (E+, E−) is the velocity of a shock wave located at x = X(t) and such that
E(X−, t) = E− and E(X+, t) = E+.

Physically, (1.2) expresses the fact that the voltage drop across the semiconductor
length is kept constant at the value φ L. Equation (1.1) can be derived directly from
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FIG. 2. Equal-area rule relating the electric field values behind, E−, and in front, E+, of the
shock wave with its velocity V (E+, E−).

Ampere’s law

∂E

∂t
+ v(E)n = I,(1.6)

by substituting in it the Poisson equation

∂E

∂x
= n− 1,(1.7)

where the one in the right-hand side represents the normalized density of the dopant.
The electron current v(E)n is essentially given by the probability of tunneling from
one quantum well of the SL to the next one and is assumed to be proportional to
the electron density in the quantum well. Our derivation of (1.1) homogenizes over
the SL structure. The quantum effects due to the SL structure that dominates the
phenomenon are modeled in the shape of the function v(E) (the electron velocity) and
in particular in its having two peaks as shown in the inset of Figure 1a above. Peaks
occur at certain values of the field as a result of energy level alignment in adjacent
quantum wells that leads to enhanced (or resonant) tunneling and hence to enhanced
transmission.

The shock condition (1.4) arises in the passage from the discrete model to the
continuum model. It has the geometric interpretation of an equal area rule as one
observes in Figure 2. In essence the shock condition provides a relation between the
field E+ at the front of the shock wave, the field E− at the back of the shock, and the
shock speed V . The domain of this relation is restricted by the requirement that the
entropy condition be satisfied. The entropy condition (1.5) is the usual one, saying
that the particles entering the shock move faster than the shock itself, which in turn
moves faster than the particles it encounters. The entropy condition also ensures that
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the electron density inside the shock wave (see below for the meaning of a region of
the SL inside of the shock wave) is positive.

Our calculation is organized as follows: in section 2 we discuss the oscillations
from a qualitative viewpoint and in the further sections we do the analysis of one
complete cycle of the oscillations. We start by analyzing the shock kinematics, in
section 3, and explaining analytically the numerically observed monopole (shock plus
tail) structure. In section 4 we introduce our asymptotic scaling, derive the outer
and inner solutions, and put the pieces together working and matching in sequence
the different regions which describe a whole oscillation cycle. In sections 5 and 6 we
analyze in detail the process of creation and disappearance of a monopole, and in
section 7 we include some final remarks. Finally, Appendix A contains a derivation
of the continuum limit of the discrete SL model.

2. Qualitative discussion of current oscillations. We study the asymptotic
limit in which the length of the SL sample is large. We have derived the time-periodic
solution of the above model asymptotically and numerically. We describe it in Figure
1, in which the numerical solution of equations (1.1)–(1.3) is represented. This nu-
merical solution has been obtained by the method of lines, using backward differences
in space, a fourth-order Runge–Kutta method in time, and a large number of grid
points (5000) in order to have sufficient precision in the numerical approximation.
Notice that this method is, in fact, equivalent to solving the discrete model (A.7)–
(A.10) as an initial value problem. We have also solved equations (1.1)–(1.3) using
a fully implicit finite difference scheme and including an artificial diffusion term pro-
portional to v(E). The key element of this method is a modification of the method
proposed in [1], which distributes the grid points according to a monitor function
sensitive to the local values of the slope of the field distribution and is tuned to
track the travelling internal layers (ILs). The results obtained with both methods
agree.

One observes that at all times the field is essentially uniform over two or three
spatial intervals called domains. The latter are separated by one or, respectively,
two thin ILs in which the field value experiences a positive jump. The IL(s) are
monotonically increasing in x. To follow a complete cycle, we start with two domains
separated by a single IL. Before the IL has reached the end of the sample x = L,
a second IL starts forming at an interior point to the left of the first one and also
moves to the right. The field now displays two ILs separating three domains. As
time still increases, the IL on the right disappears either because it reaches the right
end x = L of the sample (for 1 ≤ φ < φd) or because the jump between the field
values to its left and to its right decreases to zero (for φ > φd, where 1 < φd < Em).
This leaves a field profile that has only two domains. The cycle then repeats itself.
Throughout the cycle, the uniform value of the field in each domain varies continuously
and periodically with time. At each time, the field is an increasing function of the
spatial variable. See Figure 1.

In each IL, we find that a shock connects the left or right value of the field
with an intermediate field value. The latter, in turn, connects to the value on the
other side of the IL by an exponential tail that moves rigidly with the shock. The
characteristics are parallel to the shock line on the side of the tail and end in the
shock line transversely on the other side. We call the combination of a shock and
a tail a “monopole wavefront.” In this language, an IL is a monopole wavefront
that consists of a shock and a right tail or a shock and a left tail. As we explain
in section 3, the structure of a shock with a left AND right tail does not appear.



1592 L. BONILLA, M. KINDELAN, M. MOSCOSO, AND S. VENAKIDES

As the field displays the time-periodic spatial pattern formation described above,
the current performs a simple oscillation as seen in the inset of Figure 1b. Roughly
speaking, it increases with time as long as there are only two field domains and
decreases when there are three field domains. We can describe how the field values
on the domains depend on the current without reference to the position of the shocks
in the following way. In the asymptotic scaling of interest (see (4.1)–(4.4) below),
in which the length of the semiconductor sample and the speed of the shocks are of
order O(1), the quasi-static approximation I = v(E) is valid as long as the current
value is between the local maximum and the local minimum of the v curve (see the
inset of Figure 1a) and not too close to these extreme values. The three roots of the
equation above are denoted by E(1)(I) < E(2)(I) < E(3)(I). As the current increases
(Region I, times (1) and (2) in Figure 1) taking values in the interval (vm, 1), there
are only two domains separated by an IL. The field on the left domain takes the value
E(1)(I), while on the right domain it takes the value E(3)(I). The shock condition and
the entropy condition, plus the requirement that monopoles can have only a left OR
(exclusive) right tail, allow us to determine uniquely the shock and tail characteristics
as functions of the current. After the current reaches its maximal value, a value that,
as we will see, is a little higher than the peak of the v curve, a new shock is created
(Region II, time (3) in Figure 1). As the current value now decreases (Region III,
time (4) in Figure 1), there are three field domains. The field value on the left domain
is E(1)(I), the value on the middle domain is E(2)(I), and on the right domain it is
E(3)(I). Again, using the shock and entropy conditions, we can determine uniquely
the characteristics of the two shocks and tails. This determination is shown graphically
in the five pictures in Figure 3 that describe the whole cycle. We are forced to graph
1/v instead of the more natural v in this figure, because v appears in the denominator
of the shock condition. Thus, for example, instead of picturing the current increasing,
we think of 1/I decreasing. The monopole on the right disappears (Region IV is not
shown in the figures) as the current is close to its minimal value, a value that is equal
or slightly higher than the minimum of the v curve, depending on the bias.

The position of the IL in Region II is directly determined from the voltage bias
condition as a function of I. Since the shock position and speed are known functions
of the current, we easily obtain an ODE for the current as a function of time from
which the time dependence of the current and of the shock position may be derived. A
similar but more involved calculation holds in Region III, where the current decreases
taking values in the interval (vm, 1). We have three relations: a formula for each
of the two shock speeds as functions of the current and the voltage bias condition.
The latter is a linear relation between the positions of the two shocks in which the
coefficients are known functions of the current. We have three unknowns: the two
IL positions and the current. We can determine the unknowns as functions of time
given appropriate initial conditions. We provide the required initial conditions by
(a) calculating the time and position of shock formation and (b) matching with the
field in Region II, in which the current is near its peak value. In Regions II and IV
the quasi-stationary approximation is not always valid. We use fast scale variables to
describe the birth and death of a shock in detail and match them to Regions I and III.

We can represent the evolution of the shock wave without considering its spatial
trajectory on the SL by means of the following diagram. We define the function
E+ = F(E−, u) (where u = 1/V ) by solving the equal area rule (1.4) for E+. This
function yields the field in front of the shock wave, given appropriate values of the
shock speed and of the field at the back of the shock. The domain of this function
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FIG. 3. The time-periodic solution in a nutshell. (a) Motion of one shock during one period on
a cylindrical surface whose axis is space. The diameter of the cylinder basis is 1 < 1/I < 1/vm. (b)
to (f) highlight of the equal-area conditions for the shock waves appearing in the electric field profile.
They correspond to the different stages marked in Figure 1b.

consists of all the points (E−, 1/V ) for which there is an E+ such that the equal area
rule and the entropy inequalities are true. Thus a point in the domain characterizes
a shock completely. In Figure 4 we have depicted the domain of F(E−, u) and the
complete lifecycle of a shock wave in it. As one can see in the figure and easily derive,
the domain of F(E−, u) is bounded below by the graph of the function 1/v(E). It
is bounded above by a line on which E+ reaches the maximal value obtained by the
equal area rule that does not violate the entropy inequalities v(E+) = V (E+, E−).
This line intersects the graph of 1/v(E) at point (EF , 1/IF ) on the first branch. It
again intersects the graph at the common point of the second and third branches
(Em, 1/vm). Observe that on the part of the first branch that belongs to the domain,
we have v(E−) = V (E+, E−), while on the second branch we have E+ = E−. Also
observe that E− = E(1)(IF ) and E+ = E(3)(IF ).

According to both our numerical experiments and asymptotic calculation, the
shock wave moves so that the point (E−, 1/V ) always remains on the boundary of the
domain of F(E−, u). The shock wave first appears at a point on the second branch
of 1/v(E) where E+ = E− (see Figure 4). Then the point (E−, 1/V ) moves from the
second to the first branch of 1/v(E), where it satisfies V (E+, E−) = v(E−) until it
arrives at (EF , 1/IF ). It then continues moving on the upper boundary of the domain
of F(E−, u) where V (E+, E−) = v(E+), until it reaches (Em, 1/vm) where the shock
wave dies. (We have assumed a large enough bias, φ > φd. For smaller biases, the
shock reaches x = L before the current has attained its minimum value. Then the
shock dies at some point on the upper boundary of the domain of F(E−, u).)
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FIG. 4. Domain of the function E+ = F(E−, 1/V ). The projection of E+(t) on this diagram
for each time represents the evolution of the shock wave during its entire life.

To summarize, in a full cycle of the oscillation the following regions can be iden-
tified:

• Region I. One monopole (two domains) exists, and the current is increasing
(see Figure 3e).
• Region II. A second monopole is born near x = 0, and the current is nearing

a maximum which is slightly higher than the peak of the v curve (see Figure
3f).
• Region III. Two monopoles (three domains) propagate, and the current de-

creases (see Figure 3b).
• Region IV. The monopole on the right disappears, and the current is nearing

a minimum which is slightly higher than the minimum of the v curve (see
Figure 3c).

The different regions described here are analyzed asymptotically in section 4,
where we derive the outer and inner solutions and put the pieces together working
and matching in sequence on Regions I, II, III, and IV. The technical work on Regions
II and IV is done in sections 5 and 6, respectively.

3. Kinematics of shock waves. In this section we shall analyze the processes
of shock formation (near the boundary) and the existence and properties of monopole
wavefronts which are a shock wave and a tail to its left or right moving at the shock
velocity. These matters are fundamental ingredients of the asymptotics of later sec-
tions.

3.1. Formation of shock waves. The formation of shock waves on the infinite
real line from arbitrary initial data and constant current have been considered before
for the model of the Gunn effect in semiconductors [18, 24, 2]. The main result is that
for an initial positive field profile a shock wave develops in finite time if ∂E/∂x > 0
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is large enough. For the time-periodic solution we are interested in, the shock waves
develop near the boundary at x = 0 for appropriate values of the current density. We
shall now analyze Region II and derive exact formulas for the time and position at
which a new shock wave appears.

Let us solve the hyperbolic equation (1.1) with the boundary condition (1.3) by
the method of characteristics:

dE(t; τ)
dt

= I − v (E(t; τ)) ,(3.1)

dx(t; τ)
dt

= v (E(t; τ)) ,(3.2)

with the boundary conditions

E(τ ; τ) = E0(τ),(3.3)
x(τ ; τ) = 0.(3.4)

We have parametrized the characteristic curves by the times at which they issue
from the boundary at x = 0. The boundary field E0(τ) has to be chosen so that the
boundary condition ∂E(0, t)/∂x = c holds. Clearly,

c =
∂E

∂x
(0, t) =

∂E

∂τ
(τ ; τ)

∂τ

∂x
|x=0 .(3.5)

We derive some relations that will be of use. Taking a τ -derivative of the solution of
(3.2) and (3.4)

x(t; τ) =
∫ t

τ

v (E(s; τ)) ds,(3.6)

and then setting x = 0 (equivalently, t = τ) in the result, we obtain

∂x

∂τ
(τ ; τ) = −v (E(τ ; τ)) = −v (E0(τ)) .(3.7)

Equations (3.5) and (3.7) yield

∂E

∂τ
(τ ; τ) = −c v(E0(τ)).(3.8)

An equation for E0 is found by taking a τ -derivative of the boundary condition (3.3)
and substituting (3.8) in the result:

dE0

dτ
=
∂E

∂t
(τ ; τ) +

∂E

∂τ
(τ ; τ) = I(τ)− v(E0(τ))− c v(E0(τ));

that is,

dE0(τ)
dτ

+ (c+ 1) v (E0(τ)) = I(τ).(3.9)

This equation may be obtained directly by substituting c = ∂E/∂x into the hyperbolic
equation (1.1). Finally, we can combine (3.1) and (3.2) into the equation

x(t; τ) + E(t; τ) =
∫ t

τ

I(s) ds+ E0(τ).(3.10)
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We can now derive a formula for the time at which a shock wave first appears. This
happens when the function τ(x; t), obtained by solving x(t; τ) = x for fixed t, first
becomes multivalued. At the time of shock formation, the function x(t; τ) has an
inflection point with zero slope in the τ variable and therefore satisfies ∂x(t; τ)/∂τ = 0
and ∂2x(t; τ)/∂τ2 = 0. These are two conditions to be used in determining the time
and location of the new shock wave

∂x(t; τ)
∂τ

=
dE0

dτ
− I(τ)− ∂E(t; τ)

∂τ
= −(1 + c) v(E0(τ))− ∂E(t; τ)

∂τ
,(3.11)

where (3.9) has been used. We can find ∂E(t; τ)/∂τ ≡ Eτ (t; τ) by differentiating (3.1)
and (3.3) with respect to τ , using (3.8), and solving the resulting linear problem

dEτ (t; τ)
dt

= −v′ (E(t; τ)) Eτ (t; τ),(3.12)

Eτ (τ ; τ) = −c v (E0(τ)) .(3.13)

The result may be inserted into (3.11) to obtain

∂x(t; τ)
∂τ

= v(E0(τ))
(
c exp

[
−
∫ t

τ

v′(E(s; τ)) ds
]
− 1− c

)
.(3.14)

From (3.14) we immediately obtain

∂2x(t; τ)
∂τ2 =

v′(E0(τ))
v(E0(τ))

E′0(τ)
∂x(t; τ)
∂τ

+ c v(E0(τ)) exp
[
−
∫ t

τ

v′(E(s; τ)) ds
]

×
(
v′(E0(τ)) + c v(E0(τ))

∫ t

τ

v′′(E(r, τ)) exp
[
−
∫ r

τ

v′(E(s; τ)) ds
]
dr

)
.(3.15)

When the expressions given by (3.14) and (3.15) are set equal to zero, their solutions
t = ts and τ = τs yield the time and position at which a shock wave first appears:

c

1 + c
= exp

[∫ ts

τs

v′ (E(t; τs)) dt
]
,(3.16)

− v
′(E0(τs))

c v(E0(τs))
=
∫ ts

τs

v′′(E(r, τs)) exp
[
−
∫ r

τs

v′(E(s; τs)) ds
]
dr,(3.17)

xs =
∫ ts

τs

v (E(t; τs)) dt.(3.18)

The times ts and τs in (3.16) and (3.18) are functions of c and L determined by the
condition that ts is the smallest time for which (3.16) and (3.17) are satisfied. Notice
that (3.16) has no solution ts > τs for −1 ≤ c ≤ 0. This explains why the time-
periodic electric field profiles, which appear in the numerical simulations with such
boundary conditions, do not exhibit shocks [15]. In order to find ts, xs, and τs from
equations (3.16)–(3.18), we need to know E(t; τ) along the characteristics, which is
obtained by solving (3.1) when the current is known. This analysis is carried out in
section 4.3 using an asymptotic approximation to the current density I(t).

3.2. Monopole wavefronts. We now construct the ILs referred to in the In-
troduction, which are basic elements of our asymptotics. Assuming constant current,
we construct shock waves with a left or right tail moving rigidly at the shock velocity
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V (E+, E−). We call a monopole with a left (resp., right) tail the IL composed of the
shock wave plus the transition layer (the tail) to its left (resp., right). The monopoles
will be used as building blocks in the asymptotic description of the time-periodic so-
lution. In the moving coordinate χ = x − X(t), where X(t) is the position of the
shock at time t [so dX/dt = V (E+, E−)], we have

[v(E)− V (E+, E−)]
∂E

∂χ
= I − v(E).(3.19)

We shall distinguish two cases.
Case 1. I < V . We construct a left tail by solving (3.19) in the region χ ≤ 0. As χ

varies from 0 to χ = −∞, E varies from E(0−) = E− to E(−∞) = EL. The quantity
v(E) varies from v(E−) to v(EL) = I (EL is necessarily a fixed point of (3.19)). Let
us prove that v(E−) = V (E+, E−). If V < v(E−), we have v(EL) = I < V < v(E−),
and the function v(E)−V has a zero between EL and E−. Thus (3.19) does not have
a solution that connects EL and E−, and we must have v(E−) ≤ V (E+, E−). But
then the entropy condition V (E+, E−) ≤ v(E−) implies V (E+, E−) = v(E−). The
behavior of the tail near χ = 0 is described by

dE

dχ
∼ I − V
v′(E−)(E − E−)

, E(0) = E−,

which when solved yields

E(χ) ∼ E− −

√
2(V − I)
v′(E−)

√
−χ, χ→ 0− .

With this choice of the minus sign in front of the square root, E(χ) is an increasing
function, as indicated by (3.19). Since V > I, v′(E) > 0, and therefore E− is
necessarily on the first branch of the v curve.

The only solution of (3.19) for χ > 0 with E(0+) = E+ that we have observed in
the numerical simulations is the constant solution E(χ) = E+, with v(E+) = I. We
have the following partial explanation of this fact. Let E(χ)→ ER as χ→∞. Clearly
v(ER) = I. In a neighborhood of ER we can multiply (3.19) by v′(E) ∼ v′(ER) and
obtain

d

dχ
(v − I) ∼ v′(ER)

V − I (v − I).

As χ → ∞, the point v = I is unstable if v′(ER) > 0 and stable if v′(ER) < 0. The
unstable case corresponds to fields on the third branch of the v(E) curve, and the only
solution having E → ER (hence v(E)→ v(ER)) as χ→∞ is E ≡ ER = E+ (v ≡ I).
In the stable case, we cannot exclude right tails based on the above arguments. We
have excluded them because they do not appear in our numerical simulations.

Case 2. I > V . This case is completely analogous to Case 1. We obtain monopole
waves with a right tail. To summarize, we note the following.

• When I < V , v(E−) = V (E+, E−) ≡ U(E+), I = v(E+), the monopole
moves with velocity dX/dt = U(E+), and it has a left tail, i.e., EL < E− <
E+ = ER.
• When I > V , v(E+) = V (E+, E−) ≡ W (E−), I = v(E−), the monopole

moves with velocity dX/dt = W (E−), and it has a right tail, i.e., EL = E− <
E+ < ER.
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The functions U(E+) and W (E−) are defined by the above relations.
In Figure 1a a monopole with a right tail can be observed in the field profile

corresponding to time (2). This is better displayed when plotting ∂E/∂x as shown
in the inset of Figure 1b. Time (1) corresponds to a value of the current close to IF
(IF = 0.58) where neither a left nor a right tail exists.

4. Asymptotic analysis of the time-periodic solution. Let us describe one
period of the oscillations for bias 1 < φ < E(3)(1) (recall that E(1)(I) < E(2)(I) <
E(3)(I) are the three roots of v(E) − I for vm < I < 1). It is convenient to redefine
the time and space scales in such a way that the SL length becomes 1:

ε =
1
L
, y =

x

L
, s =

t

L
.(4.1)

Then (1.1)–(1.3) become

∂E

∂s
+ v(E)

∂E

∂y
=
I − v(E)

ε
,(4.2) ∫ 1

0
E(y, s) dy = φ,(4.3)

∂E(0, s)
∂y

= cL.(4.4)

We shall describe the time-periodic solution of these equations in the limit ε → 0
(L → ∞) by leading-order matched asymptotic expansions. Observe that L is the
nondimensional length of the SL (see Appendix A, equations (A.6) and (A.11)),
and therefore we analyze the limit in which the SL length is large compared with
ε ẼM/(ÑD e ).

4.1. Outer solutions. Clearly the leading order of the outer expansion of the
solutions to (4.2)–(4.3) yields

I − v(E) = 0.(4.5)

Then the outer electric field is a piecewise constant function whose profile is a suc-
cession of zeros of I − v(E), E(k)(I) (k = 1, 2, 3), separated by discontinuities. These
discontinuities are the shock waves corresponding to monopoles with left or right tails
moving with speeds given by (1.4), as discussed in section 3. Let us suppose that
y = Y (s) represents the location of a shock wave separating two different solutions of
(4.5). According to section 3,

dY

ds
= U(E+), V (E+, E−) = v(E−) ≡ U(E+) if I < V (E+, E−),(4.6)

dY

ds
= W (E−), V (E+, E−) = v(E+) ≡W (E−) if I > V (E+, E−).(4.7)

Notice that the limiting values E+ in (4.6) and E− in (4.7) are solutions of (4.5), and
therefore they are functions of I(s). The current density should then be determined
from these equations and the bias condition (4.3) (see below).

4.2. Inner solutions. Near y = 0 or near the shock waves there are regions of
fast variations of the electric field. In them I = I(s), E ∼ F (x, t), where x = y/ε and
t = s/ε according to (4.1).
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The field in the boundary layer near y = 0 obeys the equations

∂F

∂t
+ v(F )

∂F

∂x
= I(s)− v(F ),(4.8)

F (0, t) = E0(s), with ε
dE0

ds
+ (1 + c) v(E0) = I(s),(4.9)

because of (3.9). Except in very short time intervals when a new shock wave is
being formed, F = F (x) is a quasi-stationary monotonically increasing profile joining
F (0) = E(1)[I(s)/(1 + c)] and F (∞) = E(1)[I(s)].

In the tail regions of a monopole, the electric field is a solution of (3.19); that is,
F = F (χ; s) with χ = (y − Y (s))/ε and

[v(F )− V (E+, E−)]
∂F

∂χ
= I(s)− v(F ).(4.10)

When I(s) < V (E+, E−) (resp., I(s) > V (E+, E−)), E− (resp., E+) is a function
of E+ (resp., E−) given by V (E+, E−) = v(E−) ≡ U(E+) (resp., V (E+, E−) =
v(E+) ≡ W (E−)), and (4.10) should be solved for χ < 0 (resp., χ > 0) with the
boundary condition F (0−) = E− (resp., F (0+) = E+). Obviously F matches the
value of the outer solution, E(k)[I(s)], as we leave the tail region, χ→ −∞ (k = 1, 2)
or χ→ +∞ (k = 2, 3).

4.3. Putting the pieces together. We shall start at a time where there is only
one shock wave on the SL, the current is IF (see Figure 4), and the electric field is a
shock wave joining spatially uniform regions with E− = E(1)(IF ), E+ = E(3)(IF ). At
time s = 0, the shock wave is located at y = YF = [E(3)(IF )−φ]/[E(3)(IF )−E(1)(IF )]
according to the bias condition (4.3). For s > 0, the shock (E−, 1/V ) is at the
upper boundary of the domain of E+ = F(E−, u) (see the Introduction), so that
v(E+) = V (E+, E−) ≡ W (E−), I < 1, and a monopole with a rigidly moving right
tail is formed. Let y = Y (s) be the shock position. Then the outer field profile is

E(y, s) = E(1) (I(s)) if 0 < y < Y (s),
E(y, s) = E(3) (I(s)) if Y (s) < y < 1.(4.11)

The bias condition (4.3) determines Y (s) as a function of I(s):

Y =
E(3)(I)− φ

E(3)(I)− E(1)(I)
.(4.12)

Inserting (4.12) into (4.7) we find the following autonomous equation for the current
density:

dI

ds
=

(E(3) − E(1))2 v′1W1

E(3) − φ+ (φ− E(1)) v′1/v
′
3
≥ 0,(4.13)

where v′j = v′(E(j)), and Wj = W (E(j)), j = 1, 2, 3. To obtain (4.13) we have used

dE(n)(I)
ds

=
1

v′(E(n)(I))
dI

ds
, n = 1, 3,

which follows from time differentiation of (4.5) with E = E(n)(I). Equation (4.13)
explicitly displays the quasi-steady growth of the current during this stage of the
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oscillation. The solution I(s) of (4.13) reaches 1 at a time s = s1 which is numerically
calculated. As we approach this time, E(1)(I) ∼ 1 − [2 (1 − I)/|v′′(1)|]1/2, and the
solution of (4.13) becomes

I ∼ 1− |v
′′(1)|
2

[a(s1 − s)]2,(4.14)

a =
[E(3)(1)− 1]2W (1)

E(3)(1)− φ .(4.15)

The corresponding outer electric field profile is

E(y, s1) = 1 if 0 < y < Y (s1),
E(y, s1) = E(3)(1) if Y (s1) < y < 1,(4.16)

with

Y (s1) =
E(3)(1)− φ
E(3)(1)− 1

.(4.17)

Obviously after this instant our approximations break down. What happens then?
We shall see below that at s = sM , sM − s1 = O(

√
ε), I reaches a maximum and

then decreases, while the field to the left of the monopole, EL = E−, increases linearly
with time, and the field to the right of the monopole, ER = E(3)(I), decreases. When
I surpasses 1, EL can no longer be approximated by E(1)(I). In a short time interval
about s = sM , EL and I are close to 1, and the difference I − v(EL) eventually
acquires a positive value of the same order as the time derivative εdEL/ds = O(ε).
Then I−1 = O(ε), EL−1 = O(ε1/2), which happens in a time scale s−sM = O(ε1/2).
We thus make the ansatz

ŝ =
s− sM
ε1/2

,(4.18)

I ∼ 1 + ε Î(ŝ),(4.19)
EL − 1 ∼ ε1/2ÊL(ŝ), ER − E(3)(1) ∼ εÊR(ŝ).(4.20)

In the time scale (4.18), the shock speed is O(ε1/2),

dY

dŝ
= ε1/2W (1) +O(ε),(4.21)

so that

Y (ŝ) = Y (sM ) + ε1/2W (1) ŝ+O(ε).(4.22)

(Notice that Y (sM ) − Y (s1) = O(ε).) Inserting the field profile (4.20) and the time
scale (4.18) into (4.2), we get

dÊL
dŝ

= Î − 1
2
v′′(1) Ê2

L,(4.23)

ε1/2
dÊR
dŝ

= Î − v′
(
E(3)(1)

)
ÊR.(4.24)

We therefore have

ÊR =
Î

v′
(
E(3)(1)

)(4.25)
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to leading order. Inserting the electric field profile and (4.22) into the bias condition
(4.3), we find ÊL by equating terms of order ε1/2:

ÊL =
(E(3)(1)− 1)W (1)

Y (s1)
= a ŝ,(4.26)

where a is given by (4.15). To find Î, we substitute this result into (4.23), thereby
getting

Î = a− |v
′′(1)|
2

a2 ŝ2.(4.27)

In outer units we therefore have

I ∼ 1 + εa

[
1− |v

′′(1)| a (s− sM )2

2ε

]
,(4.28)

EL ∼ 1 + a (s− sM ).(4.29)

We have chosen E−(sM ) = 1, as for this value of the electric field the current
density reaches its maximum. The relation between sM and previous times for which
the approximations (4.11)–(4.13) hold should be found from a matching condition.
I(s) takes on the value 1− κε, κ = O(1), at the times sκ1 and sκ2, given by

sκn = sM + (−1)n
√

2(a+ κ)ε
a2|v′′(1)| ,(4.30)

with n = 1, 2. s1 for which I(s1) = 1 corresponds to κ = 0 in (4.30). At these times,
ER ∼ E(3)(1) and

EL(sκn) ∼ 1 + (−1)n
√

2(a+ κ)ε
|v′′(1)| .(4.31)

Notice that (4.28) and (4.14) match for any positive κ = O(1), as their difference is√
2 |v′′(1)| a2 (a+ κ) ε (s− s1) +O(ε),(4.32)

which is O(ε1/2) = o(1) when the proper outer scales of current (I = O(1)) and time
(s = O(1)) are used. We will choose appropriately the value of κ (κ = 1.78), so as to
optimize the leading-order asymptotics we are describing here.

During a time interval about s = sM , the time derivative of EL is not negligible,
and we have an unsteady stage during which a new shock wave is created if the excess
charge c is positive. Using the current density given by equation (4.28), the new shock
wave appears at x = xs, t = ts (ss, ys in the outer variables) as obtained by solving
(3.16)–(3.18). Details about the birth of the new wave are given in section 5.

After the new wave has appeared, there is a time interval where both old and new
shocks (located at y = Y and y = Yn, respectively) coexist. The outer field profile
consists of two shock waves connecting regions where the electric field is uniform:

E = EL, 0 < y < Yn,

E = EM , Yn < y < Y,

E = ER, Y < y < L.(4.33)
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The bias condition (4.3) is now

YnEL + (Y − Yn)EM + (1− Y )ER = φ.(4.34)

Equation (4.5) implies that

EL = E(1)(I(s)), EM = E(2)(I(s)), ER = E(3)(I(s)).(4.35)

The equations of motion for the monopoles are

dYn
ds

= U(EM ),(4.36)

dY

ds
= W (EM ).(4.37)

From (4.34)–(4.37), we determine the unknowns I(s), Yn(s), and Y (s) as follows.
The bias condition (4.34) may be rewritten as

Yn = β − αY,(4.38)

where

α =
ER − EM
EM − EL

, β =
ER − φ
EM − EL

,(4.39)

or, using (4.35),

α =
E(3) − E(2)

E(2) − E(1) , β =
E(3) − φ
E(2) − E(1) .(4.40)

The three remaining unknowns Y , Yn, and I can be determined from (4.35)–(4.39).
By using these equations, we can first find Y and Yn as functions of I and then obtain
an equation for I(s). Equations (4.36) and (4.37) yield

dYn
dI

=
U2

W2

dY

dI
.(4.41)

A linear equation for Y (I) may be obtained from (4.38), (4.40), and (4.41):

dY

dI
+

α′W2

U2 + αW2
Y =

β′W2

U2 + αW2
,(4.42)

where α′ and β′ are the derivatives of α and β with respect to I.
A careful computation shows that the solution obeying Y (1) = [E(3)(1)−φ]/[E(3)(1)−

1] (leading-order location of the old shock wave at the time the new shock forms),
and thus matches the previous stage, is

Y = lim
γ→0+

{∫ I

1−γ

W2 β
′

U2 + αW2
exp

[
−
∫ I

J

α′W2

U2 + αW2
dr

]
dJ

+
E(3)(1)− φ
E(3)(1)− 1

exp

[
−
∫ I

1−γ

α′W2

U2 + αW2
dr

]}
.(4.43)

Equation (4.43) holds as long as

0 < Y ≤ 1 and vm ≤ I < 1.(4.44)
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Taking a time derivative of the bias condition and using (4.36) and (4.37), we find

dI

ds
=
U2 + αW2

β′ − α′ Y(4.45)

to be solved with the initial condition I(ss) = Is (the value of the current at the shock
formation time), which comes from matching with the previous stage.

The solution of this equation shows that the current decreases until one of the
two conditions (4.44) breaks down. Either (i) the shock wave at Y (s) reaches y = 1
at some time sd, or (ii) the current I(s) takes on the value vm corresponding to the
minimum electron velocity at some time sm with Y (sm) < 1. One possibility or the
other is realized according to the value of the bias: let φd be the bias for which Y = 1
when I = vm in (4.43). For 1 ≤ φ < φd we have possibility (i), whereas possibility (ii)
is realized for φ > φd. In both cases, we are left after this stage with one monopole
with a left tail and EL = E(1)(I), and ER = E(2)(I) (case (i)), or ER = E(3)(I) (case
(ii)), moving toward x = L. The current density is determined from the following
equation, analogous to (4.13):

dI

ds
=

(E(k) − E(1))2 v′1 Uk
E(k) − φ+ (φ− E(1)) v′1/v

′
k

,(4.46)

where k = 2 in case (i) or k = 3 in case (ii). This equation has to be solved for s > sd
with the initial condition I(sd) in case (i), or for s > sm with initial data I(sm) = vm
in case (ii).

In case (i), I ′(sd) > 0 if

1 < φ <
E(1) v′1 + E(2) |v′2|

v′1 + |v′2|

∣∣∣∣
s=sd

≡ φβ .(4.47)

For the velocity curve we use, the bias interval (4.47) is very narrow, and the corre-
sponding values of I(sd) are very close to 1. We may have a small-amplitude current
oscillation corresponding to a supercritical Hopf bifurcation. When the bias is larger,
I ′(sd) < 0, and I decreases until I = vm is reached and ER becomes E(3)(I). From
there onward, I increases and the situation is the same as in case (ii) after the fast
intermediate stage. We then have a current oscillation of amplitude approximately
given by 1−vm. The transition from small to large-amplitude oscillation is extremely
sharp, which accounts for the difficulty in observing it in simulations or in real labo-
ratory experiments. In both cases, after some time the current density increases until
the value IF is reached, the monopole flips its tail to the right, and we have completed
the asymptotic description of one period of the self-sustained oscillation. Comparison
between our asymptotic solution and a numerical simulation is shown in Figure 5.

5. Birth of the new shock wave. In this section we need to solve the charac-
teristic equations given an approximate expression for the current density, e.g., (4.28),
and then calculate the shock formation time and its earliest position. These quantities
can be used as initial values for the following stage of the oscillation as described in
the previous section.

There are two possibilities:
• I(ts) ≈ 1 at the shock formation time. Then the current density may be

approximated by (4.28) during the process of shock formation.
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FIG. 5. Comparison between our asymptotic solution and a numerical simulation of the full
model for φ = 1.25, ε = 0.02, and c = 0.01.

• I(ts) < 1, and (4.28) ceases to hold during the last part of the process of
shock formation. After the current decreases below I = 1, we again have a
quasi-steady stage with

EL ∼ E(2)(I), ER ∼ E(3)(I), Y ∼ E(3)(I)− φ
E(3)(I)− E(2)(I)

,(5.1)

and

dI

ds
∼ (E(3) − E(2))2 v′2W2

E(3) − φ+ (φ− E(2)) v′2/v
′
3
≤ 0.(5.2)

Clearly I(s) and ER ∼ E(3) decrease while E− ∼ E(2) increases as the time
elapses. Equation (5.2) approximates the current density from the time it has
decreased below 1 until the shock formation time. If no shock wave is formed
as E(2) approaches the value φ (which occurs for c sufficiently close to 0),
Y ∼ 1 according to (5.1), and the old shock wave exits at the receiving end of
the SL. At this time the stationary uniform field profile E = φ is reached and
maintained. These observations are in excellent agreement with the results
of the numerical simulations.

For a wide interval of c, equation (4.28) describes the current density during the
full shock formation stage. We will see that the shock formation time decreases as c
increases for small c; it reaches a minimum and then increases rapidly with c. Actually,
(3.16) implies that the integral of v′(E(t; τs)) has to be negative, and therefore that
the field on the characteristic with τ = τs needs to take values on the second branch
of the v(E) curve. Typically the field E0(τ) increases with τ , it reaches a maximum,
Emax0 , at τmax, and then decreases to E(1)(I(τ)). We have to distinguish two cases



TRAVELING FRONTS IN SEMICONDUCTOR SUPERLATTICES 1605

depending on whether Emax0 surpasses 1, which happens for enough small c. In fact,
the critical value, c̃, for which this maximum equals 1 occurs when the current density
is maximum (observe that (4.28) does not depend on c). As Imax ∼ 1 + εa, then it
follows from (3.9) that c̃ = εa.

Let us consider the case c < c̃ in which this maximum value surpasses 1. Then the
smallest time ts for which (3.16) is satisfied is the one corresponding to the character-
istic issuing from E0(τs) = 1. For smaller τs there is initially a positive contribution
to the integral, leading to higher values of ts. For larger τs the field along the charac-
teristic quickly falls to E(1)(I) leading again to a positive contribution to the integral
and therefore equation (3.16) is not satisfied. For Em > E(t; τ) > 1 the integral of the
characteristic equation along the direction of increasing t is unstable. Thus, we carry
out the integration of the characteristic in the direction of decreasing t, starting at
E(2)(I(ts)) and ending at t such that E(t; τs) = 1. The value of ts for which equation
(3.16) is satisfied gives the shock formation time and therefore the shock position. In
this case, the shock formation time decreases with increasing c, because the right-hand
side of (3.16) increases. We have solved this problem for L = 50, c = 10−4 obtaining
ts − tM = 7.08, xs = 7.66, and I(ts) = 0.93. This value agrees well with the result of
direct numerical simulations of the model.

If c > c̃, the smallest time ts for which (3.16) is satisfied is the one corresponding
to the characteristic issuing from Emax0 (τs = τmax). The characteristic corresponding
to this value τs starts by giving a positive contribution to the integral until E(t; τs)
reaches 1. Therefore, as c increases this positive contribution increases, and the shock
formation time increases, which has been verified by direct numerical simulation.

Let us now find approximations to (3.16)–(3.18) with the help of our previous work
on intermediate scales instead of integrating numerically the characteristic equations.
Clearly we find ss − sM = O(ε1/2), and ys = O(ε1/2). While the old shock wave
corresponds to a monopole with a right tail moving with velocity (4.7), the new shock
wave corresponds to a monopole with a left tail, moving with velocity (4.6) (see Figure
3b).

In order to estimate the shock formation time and position, we need to calculate
the solution of (3.16) and (3.17) approximately. This might be quite involved, as
the current density (needed to calculate the electric fields appearing on the formulas)
depends on the field profiles, which should be calculated by the method of character-
istics. Fortunately in the asymptotic limit ε→ 0, the new shock wave is born during
a time interval |s− sM | = O(

√
ε), at a distance ys = O(

√
ε) from y = 0. The current

density is approximately given by the parabola (4.28), and both the equations for the
field at the injecting contact and the characteristic equations are simpler. We shall
give the approximate form of these equations and then insert their solutions in the
exact formulas (3.16) and (3.17), whose solution yields the shock formation time.

Let us start by finding the approximate equation for the electric field at y = 0,
(3.9). During the quasi-stationary first stage of the oscillation described by (4.11) to
(4.13), the field at the SL boundary is given by the quasi-steady form of (3.9),

E0(s) ∼ E(1)
(
I(s)
1 + c

)
,(5.3)

until s = s1. During the faster stage about sM characterized by the scaling (4.18)–
(4.20), (3.9) may be approximated by using (4.27) for Î and E0 − 1 = ε1/2 Ê0:

dÊ0

dŝ
= a− cL+

|v′′(1)| (1 + c)
2

(
Ê2

0 −
a2 ŝ2

1 + c

)
.(5.4)



1606 L. BONILLA, M. KINDELAN, M. MOSCOSO, AND S. VENAKIDES

We can rewrite this equation so as to eliminate all parameters but one:

de0

dσ̂
= µ+ e2

0 − σ̂2,(5.5)

µ =
(

1− c

aε

) √
1 + c,(5.6)

e0 =
|v′′(1)|1/2 (1 + c)3/4

√
2a

Ê0,(5.7)

σ̂ =
(|v′′(1)| a)1/2 (1 + c)1/4 ŝ√

2
.(5.8)

This equation should be solved with the initial condition

E0(sκ1) = E(1)
(

1− κε
1 + c

)
,(5.9)

which follows from (5.3) when the current I(sκ1) = 1 − κε (for s in the overlapping
region) is used (see (4.30)). If c = O(ε), we may solve (5.9) to leading order within
the scaling (5.7)–(5.8):

e0(−
√

1 + κ/a) = −
√
κ+ c/ε

a
.(5.10)

A phase plane study of (5.5) indicates that E0 increases, reaches a maximum, and
then decreases. There are several cases worth consideration according to the values
of the parameter µ (Figure 6). If c < aε, E0 surpasses 1 (Figure 6a). In this case we
need to solve (5.5) in order to find the initial condition for the characteristic equations
(5.5) with µ = 1. For smaller µ’s, we may still use (5.3) to approximate E0. In either
case the shock formation time will be obtained by solving the characteristic equations
with an initial condition given by the solution of (5.5) or by (5.3).

We now find the approximate form of the characteristic equations. In the scaling
(4.18)–(4.20) they become

dÊ

dŝ
= a+

|v′′(1)|
2

(Ê2 − a2 ŝ2).(5.11)

By redefining the variables in this equation, we can rewrite it as

de1

dσ
= 1 + e2

1 − σ2,(5.12)

e1 =

√
|v′′(1)|

2a
Ê0,(5.13)

σ =

√
a|v′′(1)|

2
ŝ.(5.14)

Notice that σ = (1 + c)−1/4 σ̂ by (5.8). When σ takes on this value, the field on the
characteristic is equal to the boundary field E0. In scaled variables, the characteristic
is parametrized by the value σ̂ such that when σ = (1 + c)−1/4 σ̂, y = 0 and

e1

(
σ̂

(1 + c)1/4 ;
σ̂

(1 + c)1/4

)
= (1 + c)−3/4 e0(σ̂).(5.15)
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FIG. 6. Phase plane study of (5.5) corresponding to the field at x = 0 during the stage of shock
birth. (a) µ = 1, which corresponds to the electric field on the characteristics that emanate from
x = 0. (b) µ = 0.5. (c) µ = −0.5. (d) Phase plane describing the death of a shock wave when
I ≈ vm. It corresponds to (6.17) with δ = 0.3.

The general solution of (5.12) is

e1(σ;στ ) = σ − 1∫ σ
σ0

exp(−σ2 + s2) ds
,(5.16)

for σ > σ0 (e1 → −∞ as σ → σ0+), where σ0 is a function of στ = σ̂/(1 + c)1/4

coming from the initial condition (5.15).
Inserting (5.16) in (3.16) and (3.17), we find

1 + c

2
ln
(

1 +
1
c

)
=
σ2
s − σ2

τ

2
+ ln

∫ σs
σ0

exp(s2 − σ2
s) ds∫ στ

σ0
exp(s2 − σ2

τ ) ds
,(5.17)

aε

c
√

1 + c

(
−στ +

1∫ στ
σ0

exp(−σ2
τ + s2) ds

)

=
∫ σs

στ

[
e(σ2

τ−s
2)/2

∫ s
σ0
er

2
dr∫ στ

σ0
er2 dr

]2/(1+c)

ds.(5.18)

Here σs and στ correspond to ts and τs in (3.16)–(3.17), respectively. Notice that σ0
is a function of στ = σ̂/(1 + c)1/4 given by (5.15). We have solved these equations
numerically for a fixed ε and different values of c, obtaining a result consistent with
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that explained earlier: the shock formation time decreases as c increases for small c;
it reaches a minimum and then increases rapidly with c.

6. Death of the monopole. We only need to consider case (ii) separately, for
case (i) does not require the introduction of different scales and was already analyzed
in section 4. In case (ii), an intermediate stage with the same time scales as those for
the shock birth describes the death of the old shock wave. We make the ansatz

I ∼ vm + ε Î,(6.1)
EM,R − Em ∼ ε1/2ÊM,R,(6.2)

EL − E(1)
m ∼ εÊL, E(1)

m = E(1)(vm),(6.3)

ŝ =
s− sm
ε1/2

,(6.4)

where sm is the time at which the current reaches its minimum value. Equations
(4.2), (4.36), and (4.37) become

dYn
dŝ

= ε1/2 Um +O(ε),(6.5)

dY

dŝ
= ε1/2 vm +O(ε),(6.6)

dÊM
dŝ

= Î − v′′m
2
Ê2
M +O(ε1/2),(6.7)

dÊR
dŝ

= Î − v′′m
2
Ê2
R +O(ε1/2),(6.8)

Î − v′(E(1)
m ) ÊL = O(ε1/2),(6.9)

where Um = U(Em). Equations (4.38) and (4.39) still hold, but the approximation
(4.40) does not. The solution of (6.5) is

Yn(ŝ) = Yn(sm) + ε1/2 Um ŝ+O(ε).(6.10)

We now insert (4.33), (6.2), (6.3), and (6.10) into (4.38) and (4.39). The result is

Yn(sm) + ε1/2 Um ŝ ∼
Em − φ
Em − E(1)

m

+ ε1/2
[ÊRδ − (δ − 1) ÊM ] (φ− E(1)

m )

(Em − E(1)
m )2

,(6.11)

where we have defined

δ =
Em − E(1)

m

φ− E(1)
m

(1− Yd).(6.12)

Here Yd is the position of the old shock wave when the current reaches vm, given by
(4.43) with I = vm. Notice that δ ≥ 0; δ = 0 implies that the monopole Y arrives at
x = L exactly when the current density becomes vm. From the bias condition (6.11),
we find the position of the new shock at s = sm and the relation

bŝ = ÊR δ − (δ − 1) ÊM ,(6.13)

b =
Um (Em − E(1)

m )2

φ− E(1)
m

.(6.14)
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Notice that ÊM < 0 < ÊR. Then (6.13) implies that δ < 1, for otherwise we could
not have ŝ < 0. We now need to solve (6.7), (6.8), and (6.13) for the unknowns ÊM ,
ÊR, and Î. Notice that (6.13) also holds at the end of the previous quasi-stationary
stage where two monopoles coexist. There (6.7) and (6.8) with zero on the left side
also hold, which gives us the following expression for the current at the end of the
previous quasi-stationary stage:

Î =
v′′m
2

(
bŝ

2δ − 1

)2

(6.15)

for 0 ≤ δ < 1/2.
We now find the unknowns ÊM , ÊR, and Î. From (6.7) and (6.13) we can find Î

and ÊM as functions of ÊR, which inserted into (6.8) yield

dÊR
dŝ

= b− v′′m
2(1− δ) (ÊR − bŝ) [(1− 2δ) ÊR + bŝ].(6.16)

We can rewrite this equation so as to eliminate all parameters except δ:
df

dη
= 1− (f − η) [(1− 2δ) f + η],(6.17)

f =
(

v′′m
2(1− 2δ)

)1/2

ÊM , η =
(

v′′m
2(1− 2δ)

)1/2

b ŝ.(6.18)

A phase plane study of (6.17) indicates that all trajectories tend to f = η as η →
∞, which matches with the quasi-stationary stage that occurs after the disappearance
of the old shock wave at Xd (see below). This is illustrated by Figure 6d and by the
exact expression

f(η) = η +
1

(1− 2δ)
∫ η
η0

exp[(−η2 + s2) δ] ds
,(6.19)

where η0 is a constant. Of all these trajectories,the ones that match the adiabatic
stage before the old shock dies are those that follow f = −η/(1−2δ) and experience a
fast transition to f = η. When f = −η/(1− 2δ), the current matches (6.15). Assume
that the fast transition takes place at η = η1 � 1. An approximate expression for
f(η) may be found letting f = −f̃η1/(1 − 2δ), and η = η1 + η′, with 1 � η′ � η1.
Inserting this ansatz in (6.19), we find

df̃

dη′
= −η1 (f̃ + 1− 2δ) (1− f̃) +O

(
1
η1

)
,(6.20)

whose solution yields

f(η) ≈ − η1

1− 2δ

(
1− 2(1− δ)

1 + z e−2(1−δ)η1η′

)
,(6.21)

where z is a constant. After the fast transition (η′ →∞), both ÊM and ÊR become
bŝ, the old shock dies, and the current becomes

I ∼ vm + ε b+
v′′m
2
b2 (s− sm)2.(6.22)

It is interesting to find out when the current I reaches the value vm. In terms of
the variables η and f , Î may be written as

Î =
(η + fδ)2 − 1− df

dη δ

1− δ .(6.23)
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Notice that Î = 0 if f = −η/δ. Then the current reaches I = vm (Î = 0) if the slope
of the line f = −η/δ is larger than the slope of f(η) as η → −∞; i.e., 1/δ > 1/(1−2δ).
This implies 0 ≤ δ < 1/3, which occurs for biases φd < φ < φδ. When the bias is
larger, 1/3 < δ < 1/2, and the minimum of the current is larger than vm.

7. Concluding remarks. We have developed an asymptotic theory for the con-
tinuum limit of a discrete drift model of doped SLs. Our theory is in excellent quan-
titative agreement with numerical simulations of the discrete model for long enough
SLs. Our asymptotic analysis of the continuum equations indicates that they have
a stable time-periodic solution for an appropriate bias. That this is indeed so re-
mains an important open mathematical problem. The time-periodic oscillation is due
to repeated creation and propagation of traveling monopole wavefronts formed by a
shock wave and an attached tail region moving at the same velocity as the shock. The
study of the shock-wave dynamics allows us to reduce the complexity of the problem
by decomposing it into “coherent” structures and analyzing their simpler reduced dy-
namics. This decomposition should in principle yield a full explanation of the classical
chaos observed numerically when an appropriate harmonic forcing is added to the bias
[9].

The present phenomena are related to the well-known Gunn instability in bulk
semiconductors [26, 24, 13, 2, 7]. The main mathematical difference is that the trav-
eling waves responsible for the usual Gunn effect are solitary waves of the electric
field (charge dipoles), while in the present case they are monotone wavefronts of the
electric field (charge monopoles). We remark that the first numerical observation of a
“Gunn-like” instability (in a drift-diffusion model with different boundary conditions
from ours) mediated by monopoles is due to Kroemer [19]. An incomplete asymptotic
study of the Kroemer drift-diffusion model valid for particular electron velocities was
performed in [13]. The fact that many different models (e.g., “slow” Gunn effect in
ultrapure Germanium [8, 3, 5, 10]) present the Gunn instability poses the problem
of characterizing the model features that produce the Gunn effect, as precisely as
possible.

Other open problems presently being considered include explaining how well the
asymptotic solution approximates the solution of the discrete equations and how well
these results compare with experiments [15, 16, 20]. To this end, it is important to
extend the asymptotic analysis to a more complete model of SLs under photoexcitation
[4, 6]. Finally, a careful derivation of the discrete drift model from a fully quantum-
mechanical setting would be most desirable. None of the presently known derivations
is satisfactory.

Appendix A. Brief derivation of the continuum model from the discrete
model. An SL is a periodic succession of alternating long (for simplicity) slabs of two
semiconductors (GaAs and AlAs in [16, 20]). Since the energy bandgap is different
for the two semiconductors, the SL may be thought of as a periodic succession of
potential “barriers” and “valleys.” Along the growth direction of a finite SL, we find
N periods formed by a barrier and a valley with a typical length of tens of nanometers.
The lateral dimension may be one or ten thousand times larger, so that transport
phenomena along the growth dimension may be considered to be one dimensional. In
the simplest case of an n-doped N-period SL without laser illumination, the discrete
drift model consists of the following system of equations [6, 4]:

Ẽj − Ẽj−1 =
e l̃

ε
(ñj − ÑD),(A.1)
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ε
dẼj

dt̃
+ e ṽ(Ẽj) ñj = J̃ ,(A.2)

1
N

N∑
j=1

Ẽj =
Φ̃
N l̃

,(A.3)

where j = 1, . . . , N . In this model (A.1) and (A.2) are, respectively, the one-
dimensional Poisson equation (averaged over one SL period) and Ampère’s law for
the electric field Ẽj(t̃) and electron density ñj(t̃) at the site j and for the total cur-
rent density J̃(t̃). In these equations, the positive constants ε, ÑD, l, and e are the
average permittivity, average donor concentration, SL period, and the absolute value
of the charge of the electron. ṽ(Ẽ) is an effective electron velocity to be specified later.
Equation (A.3) establishes that the average electric field is given by the dc-voltage
bias Φ̃. Notice that there are 2N+2 unknowns: Ẽ0, Ẽ1, . . . , ẼN , ñ1, . . . , ñN , J̃ and
2N+1 equations so that we need to specify one boundary condition for Ẽ0 plus an
appropriate initial profile Ẽj(0). The boundary condition for Ẽ0 (the average electric
field before the SL) can be fixed by specifying the electron density at the first site, ñ1,
according to (A.1). In typical experiments the region before the SL has an excess of
electrons due to a stronger n-doping there than in the SL [16, 20]. Thus it is plausible
assuming than there is an excess number of electrons at the first SL period measured
by a dimensionless parameter c:

Ẽ1(t̃)− Ẽ0(t̃) =
c e l̃ ÑD

ε
.(A.4)

c has to be quite small because it is known that a steady uniform-electric-field profile
is observed at low laser illumination in undoped SL [20, 4]. If we adopt (A.4) with
0 < c� 1 as our boundary condition, a steady almost uniform electric field profile is
clearly a possible solution of (A.1)–(A.3).

The only function not specified so far is the electron velocity ṽ(Ẽ). This function
is used to model sequential resonant tunneling (SRT) [6] in the SL, which is the
main charge transport mechanism for the high electric fields. The velocity curve can
be derived from experiments [6] or from simple one-dimensional quantum-mechanical
calculations of resonant tunneling, as was done by Prengel, Wacker, and Schöll [25, 14].
For our analysis, the only important characteristic of the velocity curve is that it has
to have a local maximum and a local minimum and therefore a region in which the
velocity decreases with increasing field. In our analysis we will use the curve depicted
in the inset of Figure 1a.

It is convenient to render equations (A.1)–(A.4) dimensionless by adopting as the
units of electric field and velocity the values at the first positive maximum of the
velocity curve ṽ(Ẽ), ẼM , and ṽM (about 105V/cm and 427 cm/s, respectively, for the
sample of [16]). We set

Ej =
Ẽj

ẼM
, nj =

ñj

ÑD
, I =

J̃

eÑDṽM
,

t =
ṽMν t̃

l̃
, φ =

Φ̃
N ẼM l̃

,(A.5)

where the dimensionless parameter ν, defined as

ν =
ÑD e l̃

ε ẼM
,(A.6)
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is about 0.1 for the SL used in the experiments [16]. Then the dimensionless equations
of the model are

Ej − Ej−1 = ν (nj − 1),(A.7)
dEj
dt

+ v(Ej)nj = I,(A.8)

1
N

N∑
j=1

Ej = φ,(A.9)

E1 − E0 = ν c, c� 1.(A.10)

Here v(E) = ṽ(Ẽ)/ṽM , and φ is a dimensionless control parameter (the dc bias),
whereas ν, c, and N are fixed for each SL. Equations (A.7) and (A.8) are to be solved
with initial conditions for the fields Ej(0), compatible with the bias (A.9) and the
boundary condition (A.10). The initial conditions for the electron density nj(0) then
follow from (A.7).

In the continuum limit ν → 0, N →∞ so that

x = jν ∈ [0, L], L = Nν � 1,(A.11)

the system of equations (A.7)–(A.10) becomes (1.1)–(1.3) after the electron density
n(x, t) is eliminated by means of Poisson’s equation. The hyperbolic equation (1.1)
develops shock waves from initial data in finite time [2, 24]. To determine their velocity
and entropy condition we have to go back to the discrete model (A.7)–(A.10) [4]. The
shock wave is a field profile that moves rigidly with an average speed V (E+, E−), so
that Ej(t) = E(j − js(t)) with E(−∞) = E−, E(+∞) = E+ and js(t+ ∆t)− js(t) ∼
V (E+, E−) ∆t/ν for large enough ∆t. js(t) is the QW where the profile nj(t) reaches
its maximum value at time t and X(t) = ν js(t) corresponds to the shock position in
the continuum limit. Then Ej(t+ ∆t)−Ej(t) is approximately given by the distance
js(t + ∆t) − js(t) that the shock has advanced during ∆t times the field difference
−(Ej − Ej−1) at some intermediate time in (t, t+ ∆t). Thus we have

dEj
dt
∼ −Ej − Ej−1

ν
V (E+, E−).(A.12)

If we now sum (Ej −Ej−1) over the shock region, we obtain E+ −E−. On the other
hand nj = O(ν−1) � 1 and I = O(1) in the shock region, so that (A.7), (A.8), and
(A.12) yield

E+ − E− =
∞∑

j=−∞
(Ej − Ej−1) ∼ −

∞∑
j=−∞

ν

v(Ej)
dEj
dt

∼ V (E+, E−)
∞∑

j=−∞

Ej − Ej−1

v(Ej)
.(A.13)

In the continuum limit this becomes the equal area rule (1.4)∫ E+

E−

(
1

v(E)
− 1
V (E+, E−)

)
dE = 0.

To keep nj ≥ 0 inside the shock we must add the restrictions

v(E−) ≥ V (E+, E−) ≥ v(E+)
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(and hence V = v(E) at only one point x inside the shock). Likewise, no shock with
E+ < E− arises from realistic initial conditions with nj ≥ 0 [13]. Typical solutions
of the equal area rule (1.4) compatible with the entropy condition (1.5) are depicted
in Figure 2. Notice that we can have admissible values of E− and E+ belonging to
equal or different branches of 1/v(E). However, for E− and E+ to be on the same
branch of 1/v(E) they must belong to the second branch, with v′(E) < 0.
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