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Abstract. In this work we have studied the dynamics of switch-on and switch-off processes
in biased MQW structures where every well shows optical bistability in a light intensity range
(Il , Ih). We have analysed in detail MQW structures with negligible inter-well transport. We
have found that the switch-on mechanism consists of a time sequence where every QW jumps
into the high-absorption state. Therefore a step-like switching wave propagates through the
structure. The switch-off process resembles a reverse wave propagating in the opposite
direction and step-like processes in the plasma concentration decay. These effects can be
used for conversion of an analogue optical signal to digital (optical and electrical) signal(s).
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There are many quantum well heterostructures that show
bistable electro-optical absorption: multiple quantum well
heterostructures placed into the intrinsic region of a p-i-n
diode connected to an electric circuit with a series resistor
(self electro-optic effect devices (SEEDs)) [1–4]; similar
structures with an open circuit [5,6]; multiple quantum well
structures placed between charged capacitor plates [7–9];
staked asymmetric double and triple QWs [10], and others
[11]. The bistable absorption arises due to the screening of
the applied field by the photo-generated electrons and holes,
which produces considerable changes in the optical spectra
near the fundamental edge of absorption. These spectra
become dependent on the concentration of the electron–
hole plasma, i.e., on the intensity of the illumination. If
the spectrum of the illuminating light is tuned into the
region between exciton and interband absorption, the light
absorption becomes bistable; i.e. for a given range of incident
light intensities both low absorption (LA) state with low
plasma concentration, and high absorption (HA) state with
large plasma concentration can exist.

In these systems the dynamics of the switching processes
between bistable states involves different physical processes:
generation of excitons associated with the two-dimensional
electron and hole sub-bands, fast exchange between exciton
and electron–hole states, intra-well separation of electrons
and holes, changes in their wavefunctions, and inter-
well transport. Understanding these processes and their
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manifestation in optics is important for both physics and its
applications. In this work we study the dynamics of switch-
on and -off processes in a voltage biased MQW structure
without inter-well electron transfer, i.e., with an independent
balance of the photo-excited plasma concentration for
every QW. Electro-optical bistability in such structures
was investigated in papers [7–9] under quasi-stationary
conditions.

A model describing switching processes in optically
bistable MQW structures should include a self-consistent
calculation of electron–hole states in the wells (particularly
sub-band energies,Ee,Eh, and wavefunctions,9e,9h), the
absorption factorA, and exciton and plasma concentrations
(N ). Two groups of characteristic timescales are important
for the dynamics of switching. The first group comprises
faster processes with characteristic quantum mechanical
times h̄/Ee, h̄/Ep, and exchange times between exciton
and electron–hole states,τex . The second group of time
scales is related to the generation and recombination of the
photo-generated carriers. These timescales can be estimated
asNch/AI and τR, whereNch is a characteristic plasma
concentration,I is a typical light intensity, andτR is the
recombination time. The timescales in the first group
are considerably smaller than those in the second group.
The dynamics of the system can be described by means
of electron–hole states calculated at instantaneous plasma
concentrationN (t). This results in an exciton energyEex ,
which follows the position of the electron and hole sub-bands,
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Figure 1. Scheme of a MQW heterostructure illuminated by
incident light of intensityI0 and biased by an electric fieldE .

and an absorption factor adiabatically dependent onN (t).
This approach is valid for light pulses with a duration of a
few picoseconds or longer.

Let us consider a MQW structure biased by an electric
field and illuminated from below, as illustrated in figure 1.
The QWs have width 2d, and are grown vertically along
the ζ -axis (ζ is expressed in units ofd). Introducing the
characteristic energyE0 = h̄2/2md2, we will measure
sub-band energies and potential energies in these units,
while the electric field is in units ofE0 = E0/ed. The
dimensionless electron and hole concentrations (n) are in
units ofN0 = κE0/e

2d, κ being the dielectric permittivity.
The kth QW (k = 1 . . . Nw, Nw is the total number of
QWs) can be described by its dimensionless electron and
hole wavefunctionsψek , ψhk , sub-band electron and hole
energiesεek andεhk (only the lowest sub-bands are supposed
to be populated), and concentration of the photo-excited
electron–hole plasma (supposedly quasi-neutral)nk. We
also assume that electrons and holes have equal effective
masses for simplicity. According to the above discussion,
the wavefunctions and energies of thekth QW can be found
from the self-consistent Schrödinger–Poisson equation at a
given plasma concentrationnk:

d2ψk

dζ 2
+ (εk + vk − qζ )ψ = 0,

ψk(±1) = 0,
∫ 1

−1
|ψk(ζ ; nk)|2dζ = 1,

(1)

whereq is the dimensionless applied electric field, and the
dimensionless electrostatic energy is

vk(ζ ; nk) = nk
∫ 1

−1
dζ ′K(ζ, ζ ′)|ψk(ζ ′; nk)|2,

K(ζ, ζ ′) ≡ 1
2(|ζ − ζ ′| − |ζ + ζ ′|).

(2)

The electrostatic energy and the wavefunctions have the
following symmetry properties:vk(ζ ; nk) = −vk(−ζ ; nk),
andψek (ζ ; nk) = ψhk (−ζ ; nk) = ψk(ζ ; nk). The eigenvalue
εk depends parametrically onnk. We have found solutions of
equation (1) by means of a variational method. The energy
εk as a function ofnk for a particular value of the electric
field q is presented in figure 2(a). The parameters used in
the calculations are given in table 1. The increase in the

Figure 2. Steady state characteristics of individual QWs. (a)
Shows the renormalized energyε (scale on top of the figure) as a
function of the plasma concentrationn (left axis), and bistable
characteristic curven(I): plasma concentration as a function of
the incident light intensityI (left and bottom axis). (b) Shows the
hysteresis in the transmitted light through a single QW.

Table 1. Numerical values used for calculation.

Parameter Value

E0 (meV) 5.6
E0 (kV cm−1) 5.6
N0 (cm−2) 4.0× 1010

I0/h̄ω (photons cm−2 s−1) 8.1× 1021

electron and hole energies with carrier concentration arises,
obviously, from the screening of the applied field.

In the case of deep QWs and large exciton radius, the
exciton energyEex follows the position of the electron and
hole sub-bands. Assuming a Lorentz shape for the absorption
factor as a function of the photon energy ¯hω, we can write:

A(nk, q, ω) = Am3
2

(εk(nk, q)−1)2 +32
≡ Ama(nk, q, ω),

(3)
whereAm is the maximum absorption factor,1 = (h̄ω +
Eex − Eg)/2E0 is the detuning of the photon energy, and3
is the dimensionless bandwidth in units of 2E0.

We can describe the MQW structure in the case of
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independent concentration balance for each QW by the
following equations:

dnk
dt
= a(nk, q, ω)Ik−1− nk ≡ R(nk, q, ω, Ik−1), (4)

Ik = (1− Ama(nk, q, ω))Ik−1, k = 1 . . . Nw. (5)

Here we assume a linear recombination rate.t is measured
in units of the recombination timeτR. For some particular
parametersω and q, the stationary dependencen(I) is
presented in figure 2(a). Ik−1 is the intensity illuminating the
kth QW layer in units ofI0 = N0/τRAm. Thus,I0(t) is the
incident light intensity. The instant relationship (5) between
Ik(t) andIk−1(t) requires the condition 1

Ik(t)
dIk
dt � c(1−a)τR

2d ,
c being the velocity of light. This relation holds for pulses
with a duration of a few picoseconds or longer. For a given
I0(t), and an initial concentration in every wellnk(0), the
system of equations (1)–(5) defines completely the dynamic
problem for the MQW structure.

Let us consider the steady state condition. For this case,
the equation

R(nk, q, ω, Ik−1) = 0 (6)

gives the possible solutions for thekth QW. It is easy to
see that for the absorption factor of equation (3) there are
three branchesof uniform solutionsnk = nk(I, q) at some
intervals of intensitiesI and fieldsq: the low absorption
branch (low concentrationnL(I)), the high absorption branch
(high concentrationnH (I)) and the middle branch (which
is unstable). In figure 2(b) we present these branches
calculated for an individual QW for the particular parameter
values of table 1. The bistable regime occurs in the interval
Il < I < Ih. The light intensity transmitted through thekth
QW layer shows hysteresis, as depicted in figure 2(b).

Using these solutions for an individual QW, we can easily
construct possible steady states for the whole MQW structure.
If the incident intensityI0 is less than the valueIl , the MQW
structure is entirely in the LA state. IfIl < I0 < Ih, the
whole structure can be in the LA state, or some of the QWs
adjacent to the illuminated face can switch to the HA state. At
I0 > Ih the very first QW layers are certainly in the HA state,
while the rest of wells can be in the LA state. In figure 3(a)
the intensitiesIk as a function of the indexk are presented for
a 24-QW structure atI0 = 1.25× Ih. The first seven QWs
are always in the HA state and the intensity decreases quickly
across this region of the structure. The QWs withk from 8
to 20 can be in both states. The QWs withk > 20 are always
in the LA state. This results in thirteen possible stationary
states of the MQW structure. Three of these possible states
are shown in the figure: (i) seven QWs in the HA state and the
rest in the LA state, (ii) eight QWs in the HA state and the rest
in the LA state, and (iii) the wells withk = 1 . . .20 are in the
HA state, while the rest are in the LA state. The greater the
intensity of the incident light,I0, the larger will be the number
of QWs switched to the HA state. There is a critical value
of the incident light intensityI∗0, dependent on the number
of QWs of the structure, such that ifI0 > I∗0, all the wells
are switched to the HA state. Figure 3(b) depicts such a case
for a 24-QW structure whenI0 = 2Ih. Thus, the bistability
of the optical absorption in a single QW generally leads to
multistability in the MQW structure. Which particular state

Figure 3. Distribution of intensities across the MQW structure.
Positions of individual QWs are indicated. (a) Corresponds to
incident lightI0 = 1.25Ih. Three of the possible 13 steady states
described in the text are shown. Triangles correspond to case (i),
circles correspond to case (ii) and squares correspond to case (iii).
(b) Shows the steady state whenI0 = 2Ih. All the wells are in the
HA state.

occurs depends on the prehistory, i.e., on the time dependence
of the incident intensity,I0(t), during the build-up of the
stationary value†.

Let us go back to the dynamical problem and consider a
time-dependent intensity of the incident light. We introduce
the characteristic time scale of the build-up of the stationary
light intensity valueτin, so thatI = I( τR

τin
t). If

β ≡ τR

τin
� 1, (7)

we can perform a perturbative analysis. Let us rescale
equation (4) introducing the new time variable:t̄ ≡ βt . Then
we obtain that this equation can be rewritten as

β
dnk
dt̄
= a(nk, q, ω)Ik−1− nk ≡ R(nk, q, ω, Ik−1). (8)

Under condition (7), we can apply the boundary layer
singular perturbation method to solve equation (8) (see, for
example, [12]). According to this method, the solution

† If carriers may hop between QWs, the steady state distribution is, in
principle, determined by this transfer. Letτint be the characteristic time
of the inter-well transport. A suppressed inter-well carrier transfer means
τR
τint
� 1. Thus, the results of our analysis are valid for1

I
dI
dt � τR

τint
. If the

latter inequality is not satisfied, the results are valid for timest � τint
τR

.
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Figure 4. Dynamics of the MQW structure illuminated by the
light intensity given by equation (12) atIs = 1.25× Ih and
β = 0.1. The critical intensity valuesIl andIh are shown. (a)
Shows the incident intensity,I0(t), and the intensities illuminating
the first eight QWs and the transmitted intensity (the lower curve).
(b) Shows the plasma concentrations for the same wells. The first
seven QWs are switched to the HA state.

evolves smoothly over time intervals which last periodst̄ =
O(1) separated by sharp transitions lasting timest̄ = O(β).
Outer solutions evolving on the long time scalet̄ can be found
by treating the term multiplied by the small parameterβ as a
perturbation:

nk(t̄) = nk,0(t̄) + βnk,1(t̄) +O(β2).

Here the leading termnk,0(t̄) coincides with one of the two
branches of the solutions of equation (6),nL(I), nH (I), with
t̄-dependentI = Ik−1. The first correction to the outer
solution is determined by

nk,1(t̄) = − 1

(
∂a(nk,0)

∂nk,0
Ik−1(t̄)− 1)2

dIk−1(t̄)

dt̄
a(nk,0). (9)

If the leading term lies on the low concentration branch,
nk,0 = nL[Ik−1(t̄)], Ik−1 6 Ih, the first correction is
small everywhere except in a vicinity oft̄ = t̄k,h, where
Ik−1(t̄k,h) = Ih at (dI/dt̄ )t̄k−1,h > 0. As t̄ → t̄k,h the
denominator term in equation (9) goes to zero. Similarly,
when the leading term lies on the high concentration branch,
nk,0 = nH [Ik−1(t̄)], Ik−1 > Il , the first correction is small
everywhere, except in a vicinity oft̄ = t̄k,l with Ik−1(t̄k,l) =

Il , (dI/dt̄ )t̄k,l < 0. For increasingIk−1(t̄) neart̄ = t̄k,h, and
for decreasingIk−1(t̄) neart̄ = t̄k,l , the jumps between low
concentration and high concentration solutions are described
by inner solutions on the fast time scalet . To find the latter
solutions we can keepIk−1(t̄) = Ih or Ik,h(t̄) = Il in
equation (8) att ≈ t̄k,h and t̄ ≈ t̄k,l , respectively. Then,
the inner solutions are responsible for the process of fast
switching between low and high concentration states. They
have the form:∫ n

nh,l

dn

a(n)Ik−1,h,l − n = ±
t̄ − t̄k,h,l
β

, (10)

wherenh = nH (Il), nl = nL(Ih). The sign ‘+’ corresponds
to the inner solution determining switching from the low
concentration to the high concentration branches atIk−1 ≈
Ih, while the sign ‘−’ is for the inner solution joining high
concentration to low concentration branches atIk−1 ≈ Il .

Now we obtain the evolution of the photo-excited plasma
in thekth QW as follows. If the intensity of the light reaching
this well, Ik−1, increases from zero, the well is in the low
absorption state with plasma concentrationn = nL[Ik−1(t̄)]
until t̄ < t̄k,h. In a vicinity of t̄k,h a fast switch-on process
to the high absorption state withn = nH [Ik−1(t̄)] occurs
according to equation (10). A further increase in the intensity
leads to an increase in the plasma concentration and the
absorption in accordance with the high absorption branch.
If the intensity reaches a maximum and then decreases, the
kth QW remains in this state up to timēt ≈ t̄k,l , when a
fast switch-off process (described by equation (10)) to the
low absorption state occurs. As a result we have dynamic
hysteresis for thekth QW. To be switched-on, thekth QW
should accumulate plasma concentration up tonh. The
necessary time is estimated as1t̄on ≈ β(nh − nl)/nh. The
switch-off process occurs in a time1t̄off ≈ β. Important
characteristics are the changes in the intensityIk−1 during
these fast stages. These changes are of the order of

1Ion
k−1 ≈ 1t̄on

(
dI
dt̄

)
tk,h

≈ β nh − nl
nl

Ih,

1Ioff
k−1 ≈ 1t̄off

(
dI
dt̄

)
tk,l

≈ βIl .

Let us suppose that1Ion
k−1 and1Ioff

k−1 are small in comparison
with the steady state attenuation in a single QW,a(nk)Il,h.
These conditions can be rewritten as

β
nh − nl
nh

� a, β � a. (11)

If inequalities (11) are fulfilled, the times at which different
QWs switch are well separated. Indeed, according to
the above analysis, at the timēt1,h when the very first
QW switches to the HA state, the adjacent QWs follow
adiabatically the intensityI1. At t̄2, the second QW
switches-on, but the following QWs withk > 2 still follow
adiabatically the intensityI2, and so on. Thus we find that
the MQW structure switches on sequentially as the intensity
of light increases.

The reverse process—switch-off of the structure—
occurs similarly. It starts when the intensity of light at the
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Figure 5. The same situation as in figure 4 withβ = 1. Eight
QWs are switched to the HA state att →∞.

last QW in the HA state reaches the valueIl . Then a step-like
‘switch-off’ wave propagates towards the first QW.

The step-like propagation of a ‘switch-on wave’ through
the structure was also found by direct numerical simulations.
The results were obtained for a MQW structure withNw = 24
illuminated by an incident light of intensity

I0(t) = Is(1− e−βt ). (12)

In figure 4 we present numerical results forIs = 1.25× Ih
andβ = 0.1. The intensitiesIk−1 are shown as functions of
t for k = 1 . . .8. Nonmonotonic and sawtooth-likeIk−1(t)

(k = 2 . . .8) are due to the step-like switch-on of the QWs. In
figure 4(b), the concentrationsnk(t) of the first nine QWs are
shown. We clearly see that seven QWs switch in succesion to
the HA state at different times, while the other QWs remain
in the LA state. Ast →∞ the input intensity saturates and
the structure evolves to the steady state distribution presented
in case (i) of figure 3(a).

The step-like character of the switching process obtained
above in the limiting case (7) occurs also whenβ ∼ 1. This is
illustrated by the numerical simulations presented in figure 5
for a I0(t) given by equation (12) withIs = 1.25× Ih and
β = 1. Ast →∞ illumination with such an intensity results
in a steady state distribution with eight QWs in the HA state
(see case (ii) of figure 3(a)).

Increasing the light intensity leads to a larger number
of QWs switching to the HA state. In figure 6 we
present simulation results for an incident intensity given by

Figure 6. The same situation as in figures 4 and 5 with
Is = 2× Ih andβ = 0.1. All the wells are switched to the HA
state. Only wells with an odd index are shown.

equation (12) withIs = 2 × Ih andβ = 0.1. From this
figure we can see that the step-like switching process now
involves all the QWs. For this intensity the final distribution
corresponds to the steady state presented in figure 3(b). It
is interesting to note that the output intensity is close to the
valueIh.

For a pulse illumination with a maximal intensity above
Ih both processes—switch-on and switch-off—take place.
Using a Gaussian pulse:

I0(t) = Imaxe
−(βt)2 (13)

we found step-like switch-on and switch-off waves. In
figure 7 we plot calculations of the transmitted intensityIout,
as a function of the incident light intensityI0. The results
were obtained forImax = 1.25× Ih andβ = 0.1. Instead
of a smooth hysteresis loop, we find one with a fine structure
corresponding to the switch-on and switch-off processes.

It is interesting to recall that optical bistability
with increasing absorption occurs also in bulk-like
semiconductors. Different mechanisms underlying this type
of bistability and different spatio-temporal patterns have been
studied in [13–16]. For such systems, it has been found
[17, 18] that if the diffusion of the photogenerated carriers
is suppressed, switch-on and -off processes occur in a step-
like propagating wave, which is quite similar to the above
discussed results.

In conclusion, we have studied the dynamics of MQW
structures under bistable electro-optical absorption. We

88



Dynamical behaviour of biased MQW structures

Figure 7. Output intensity versus input intensity for the pulse
given by equation (13).

have formulated a model self-consistently describing the
electron and hole wavefunctions and energies, and the
processes of absorption, generation of the plasma and intra-
well relaxation. The inter-well transfer has been supposed
to be negligible. Under these conditions, steady state
distributions of the intensity and plasma concentration are
multistable. For time-dependent incident intensities we have
found that switching processes between possible states of the
structure occur as a result of sequential step-like switching
of individual QWs. This leads to a characteristic behaviour
of the transmitted intensity and input–output dependences.
It is worth noticing that due to step-like switching we can
use these MQW structures for the conversion of an analogue
optical signal to digital (optical and electrical) signal(s).
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