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Two-dimensional oscillatory patterns in semiconductors with point contacts
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~Received 17 January 2001; published 14 August 2001!

Planar samples ofn-GaAs with attached point contacts at different dc voltages may display a variety of
spatiotemporal patterns arising from the dynamics of curved charge dipole waves. Patterns rank from oscilla-
tions due to recycling and motion of simple quasiplanar or cylindrical wave fronts to more complex patterns
that include merging and splitting of different fronts. Results of numerical simulations are interpreted by means
of simple one-dimensional asymptotic theories.
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Self-sustained oscillations of the electric current in
voltage biased semiconductors presenting aN-shaped local
current-field characteristics are typically due to recycling a
motion of charge density waves@1–4#. Typical cases are the
Gunn effect in bulkn-GaAs @5,6#, slow current oscillations
in materials where trap dynamics is important such as ul
purep-Ge @7# and semi-insulating GaAs@8,9#, and superlat-
tices @10,11#, etc. These self-oscillations may be time pe
odic, quasiperiodic or chaotic@4,7,10–14#. So far, most of
the studies deal with quasi-one-dimensional geometries
which the physical and mathematical mechanisms resul
in self-oscillations are reasonably well understo
@1,2,15,16#. The situation is quite different in two or thre
space dimensions, where experimental data@8# or theoretical
studies are scarce. Two-dimensional geometries can be e
achieved by attaching point contacts to planar samples, m
out of either bulk materials or of heterostructures in horizo
tal transport.

In this paper, we numerically simulate a well-know
model of the Gunn effect~due to Kroemer@6#! on a planar
sample with point contacts at different voltages. We find
variety of spatiotemporal patterns generated by recycl
motion and interaction of charge dipole waves, which em
nate from different contacts. Patterns rank from simple qu
one-dimensional pattern~either one-dimensional Gunn effe
or cylindrically symmetric Gunn effect! to more complex
patterns.

Kroemer’s model consists of the Poisson and charge c
tinuity equations for the concentration of free carriers~elec-
trons! n(xW ,t) and the electric potentialw(xW ,t):

e ¹W 2w5e ~n2ND!, ~1!

]n

]t
1¹W •~nvW 2D ¹W n!50. ~2!

Here vW is the carrier drift velocity that is a function of th
electric field as depicted in Fig. 1. For numerical calcu
tions, we shall use the specific form,vW 5m0ERvW (EW /ER),
where vW (EW )5EW (11vsE

3)/(11E4), with E5uEW u, and ER
'4 kV/cm. At high fields, the velocity reaches a saturati
value,m0ERvs . m0 , D5m0kBT/e, e, ND'1015 cm23, and
e are zero field mobility, diffusion coefficient~assumed to be
constant for simplicity!, permittivity, doping, and the charg
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of the electron, respectively.EW 5“
W w is minus the electric

field. We shall write these equations in nondimensional fo
by adopting ER , ND , l 15eER /(eND)'0.276 mm,
l 1 /(m0ER)'1.02 ps, andERl 1'0.011 V, as the units of
field, electron density, length, time, and potential, resp
tively. In these units, we can set all coefficients in the pre
ous equations equal to one, except for writing a dimensi
less diffusion coefficient,d'0.013~at 20 K!.

The function vW (EW ) is already written in dimensionles
units. We can write an Ampe`re’s equation for the total cur
rent density,JW , by eliminatingn from Eq. ~2! using Eq.~1!.
In nondimensional form, the result is

]EW

]t
1vW ~11¹W •EW !2d¹W @¹W •EW #5JW , ~3!

with ¹W •JW50.
Boundary conditions are chosen as follows. At the int

faces between semiconductor and contacts,Sc,a , we assume
the normal components of electron current density and e
tric field are proportional~Ohm’s law! @2,15#, EW •NW 5r(nvW

2d¹W n)•NW (N is the unit normal toSc,a , directed towards
the semiconductor!. For simplicity, we choose all contact re
sistivitiesr to be equal. Bias conditions are chosen to bew

FIG. 1. Dimensionless drift velocity curve as a function of ele
tric field for two different saturation valuesvs . Contact resistivity is
chosen so that the boundary current densityj 5E/r intersectsv(E)
on its second branch, past the maximum (EM ,vM), as shown in the
figure.
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50 at cathodesSc ~injecting contacts! andw5f at anodes
Sa ~receiving contacts!. At the physical boundary of the
sample there are no contacts, and we adopt homogen
Neumann conditions there,¹W w•NW 505¹W n•NW . With these
conditions, our choice of sample and point contacts, and
initial profile for n at t50, we can start numerical simula
tions of the multidimensional Kroemer’s model. Numeric
simulations show the time evolution of current through
receiving contact,i (t)5*Sa

JW•NW dA, and of the electron den

sity profile, n(x,y,t). The latter is depicted in a gray sca
that goes from black forn50 to white for the maximum
positive value ofn; see Fig. 2. The simplest situation is o
tained when only one cathode and one anode are situate
from each other, near the ends of a rectangular sample,
Fig. 2 (Lx536, Ly56, contact separation isL530). For
appropriate bias, the electric current shows self-oscillati
consisting of a periodic array of spikes separated by reg
where the current is flat; see Fig. 3. These current traces
typical of the one-dimensional~1D! case@15#. The charge
distribution in Fig. 2 corresponds to times selected on the
portion of the time traces of the currenti (t) in Fig. 3. Evo-
lution of the electron density corresponds to repeated nu

FIG. 2. Upper part: spatial profiles of electron density~solid
line! and electric field~dot-dash line! at y5yc and t5t i , exactly
corresponding to the density plot ofn(x,yc ,t i) in the 3636 rect-
angular sample in the lower part of the figure. Outside the dip
wave and contact regions~cathode on the left, anode on the righ
separated a distanceL530) n51.

FIG. 3. Self-oscillations of the current on the rectangular sam
of Fig. 2 for biasf518. Oscillation period isT5215, i (t) is ap-
proximately 1.07 during a timeTtrip5135, corresponding to the trip
of a planar dipole wave from cathode to anode. The current s
~lastingTrelie f580) appears during wave creation and annihilat
at contacts. Extrema ofi (t) are i max52.56 andi min50.87. In this
and successive figures, the scale ofi~t! has been divided by 50.
03620
us

n

l

far
in

s
s
re

at

e-

ation of a dipole wave at the cathode, undisturbed motion
a flat front towards the anode and annihilation there;
Figs. 2–4.

A more precise analysis of our data shows that the mo
of the flat dipole far from the contacts is 1D. In terms of t
electric field, the wave is an isosceles triangle of base
heightE1'A2f56 if f518, according to the asymptoti
theory of Ref.@15#, which neglects the field outside the d
pole wave. Simulation data givesE1'5. The wave velocity
is V'p/(4E1)5p/20'0.157. The wave moves undis
turbed a distanceLtrip'22 ~contact separation is 30, minu
the size of the wave after nucleation,sn53, minus the size
of the fully formed wave as it arrives at the anode,sa55).
To traverse this distance, the wave should therefore spe
time Ttrip5Ltrip /V'140, which is very similar to that in
numerical simulations, i.e. 135; see Fig. 3. During its c
ation, the dipole wave is almost circular. This particular sta
could, therefore, be described by a sample with Corb
symmetry: a circular sample surrounded by a circular an
and enclosing a point cathode at its center@17#.

It is not necessary to use a Corbino geometry to obse
an axisymmetric Gunn effect. We can achieve this symme
placing a cathode~with f50) at the center of a square wit
four anodes symmetrically located near its vertices; see
5. Notice that the wave is annihilated before it can reach
anodes: both the wave width and height decrease unt
disappears.

To understand the axisymmetric case, we can write
~3! in polar coordinates and integrate its radial compon
with respect to the polar angle. The result is

]E

]t
1v~E!F11

1

r

]~rE !

]r G2d
]

]r F1

r

]~rE !

]r G5
J

r
. ~4!

e

le

e

FIG. 4. Details of wave annihilation and creation proces
when the current trace of Fig. 3 presents a spike~upper part of
figure!. Lower part, from left to right and top to bottom: electro
density profiles at the times marked on the current trace. After
last situation depicted, the current is almost constant, the dip
front is planar, and it moves undisturbed until it reaches the ano
3-2
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Here the total current density is directed along the rad
direction, and the functionJ depends only on time. The bia
condition is simply* r c

r aE(r ,t)dr5f, wherer c andr a are the

contact radii in a Corbino geometry. In terms of the po
contacts located at the origin~center of the square sample!

and atxWa
(k) , k51,2,3,4, r c is the radius of a point contac

while r a5uxWa
(k)u2r c . We want to understand the more salie

features of the Gunn oscillation in this case: the shape ofi (t)
and the fact that the dipole wave vanishes before reac
the anode. It is easier to understand the case whenr a@r c
@1, for dipole waves are detached from the contacts mos
the time. To analyze the Gunn effect, we need to study
boundary layers near inner and outer contacts, and to
scribe a dipole wave far from them. These analysis are fa
technical, so that we will give here few indications only@18#.
A dipole wave detached from the contacts is a straight
angle of heightE12E2 and baseRl2Rb , which are all
time-dependent parameters. It is made of a trailing fron
r 5Rb(t), which is a shock wave~moving at a speed given
by the equal area rule!, and a leading front atr 5Rl(t),
which is a region depleted of electrons@15#. We shall see tha
the trailing front increases its speed as it advances, whe
the speed of the leading front decreases. This explains
the wave vanishes before reaching the anode~which is far
from the cathode!. The electron density at the leading front
almost zero, so that the field obeys the Poisson equation
511r 21](rE)/]r , with n50, which yields:

E~r ,t !5
r w

2 ~ t !2r 2

2r
, r P@Rb~ t !,Rl~ t !#. ~5!

FIG. 5. Upper part: current traces for the axisymmetric ca
The sample is a square of sideL518, with a central cathode (f
50) and four identical anodes (f518) atd53 from its boundary.
Distance between cathode and one anode isL515/A2'10.6. Os-
cillation period, maximum, and minimum values of the current
T577.5, i max52.47, andi min50.79, respectively. Lower part o
figure, from left to right and top to bottom: Density plots corr
sponding to the times 0, 36, 50, 64, 66, and 69 marked in the u
part.
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Here the constant of integrationr w(t) is the intersection be-
tween the prolongation of the leading front and ther axis.
See Fig. 6.

The velocity of the leading front,drw /dt, can be obtained
by insertion of Eq.~5! andn50 into Eq.~4!, which yields

drw

dt
5

J

r w
. ~6!

Then r w(t)5A2*J(t)dt instead of*J(t)dt, as in the 1D
case@15#. The velocity of the trailing front,dRb(t)/dt, is
given by the equal area rule for shock waves@15#, dRb /dt
5V(E1 ,E2)[@1/(E12E2)#*E2

E1v(E)dE. If vs50,

V(E1 ,E2)5 1
2 (arctanE1

2 2arctanE2
2 )/(E12E2), which gives

dRb

dt
5

p

4E1
, ~7!

whenE1@1@E2 ~which occurs in the limit we are consid
ering!. Thus the trailing front velocity is small and sma
waves move faster than large ones.

Typically in our simulations, we have the following rela
tion r w@(r w2Rb,l)@1. In this limit, the slope of the electric
field in the leading front, given by Eq.~5!, is 21, so that
E(r ,t);r w2r inside the dipole wave andRl2Rb5E1

2E2'E1 . Then, asE@Rb(t),t#5E1(t) in the leading
front, we have:

E1~ t !5r w~ t !2Rb~ t !, ~8!

and furthermoreRl'r w . As the dipole moves,E1 decreases
becausedrw /dt,dRb /dt, and the wave vanishes before a
riving at the anode. Notice that Eq.~6!, ~7!, and ~8! imply
that the area inside the dipole,f in;E1

2 /2, decreases a
df in /dt5JE1 /r w2p/4.

To determine the shape of the current traces,i (t)
52pJ(t), we need an additional evolution equation forJ.

.

e

er

FIG. 6. Electric field profile and asymptotic approximations
the leading front and the outer field.Rb(t), position of shock wave;
Rl(t), position of the intersection between leading front and outs
field; E1(t), wave height;E2(t), outside field atr 5Rb(t); field
outside wave isJ(t)/r . At r 5r w(t), the field in the leading front
vanishes.
3-3
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Outside the wave, the electric field on the decreasing ra
solves Eq.~4! with negligible space and time derivative
Thenv(E)5J/r , which impliesE(r ,t)5E1(J/r ) outside the
wave. IfJ!r , the first branch ofv(E) is linear, and we have
E(r ,t)'J/r . The area under this stationary field profile

fout5* r
r aE1(J/r ) dr'Jln(ra /rc). The equation forJ is now

FIG. 7. Same as in Fig. 5 for a configuration with two cathod
(f50) and two anodes (f526) placed at the vertices of a squar
Sample side isL528. Oscillation period, maxima, and minima a
T5105.2,i max52.17, andi min50.74, respectively. Density plots in
the lower part of the figure correspond to the times 0, 11, 37, 39
and 47 marked in the upper part.
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obtained by time differencing the bias condition,f5f in
1fout , with the result

dJ

dt
5

1

ln~r a /r c!
S p

4
2

J E1

r w
D . ~9!

When the wave is far from the cathode, the second term
the right hand side of this equation is small compared w
the first one. ThenJ is approximately linear, with slope
p/@4ln(ra /rc)#. This behavior can be observed in Fig. 5. A
ter the dipole vanishes, a new wave is nucleated at the c
ode, and this process explains the shape of the current t
during the rest of one oscillation period. The description
this latter process is more technical and it will be publish
elsewhere.

More complicated patterns can be obtained by play
with the number and location of point contacts. Figure
shows a sample with two cathodes and two anodes locate
the vertices of a square. Axisymmetric waves are nuclea
at the cathodes, collide, form a eight shaped wave, wh
later disappears. The resulting self-oscillation of the curr
is also shown in Fig. 7.

In conclusion, we have presented a number of spatiot
poral patterns associated to Gunn self-oscillations of the
rent in rectangular samples with point contacts. Several
tures of these oscillations can be interpreted in the light
the known theory for 1D samples and its extension to a
symmetric geometries sketched here. Finding a gen
theory of these patterns is clearly a worthwhile future inv
tigation.
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