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Axisymmetric pulse recycling and motion in bulk semiconductors
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The Kroemer model for the Gunn effect in a circular geometry~Corbino disks! has been numerically solved.
The results have been interpreted by means of asymptotic calculations. Above a certain onset dc voltage bias,
axisymmetric pulses of the electric field are periodically shed by an inner circular cathode. These pulses decay
as they move towards the outer anode, which they may not reach. As a pulse advances, the external current
increases continuously until a new pulse is generated. Then the current abruptly decreases, in agreement with
existing experimental results. Depending on the bias, more complex patterns with multiple pulse shedding are
possible.
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I. INTRODUCTION

Propagation of pulses naturally occur in excitable med
which exhibit a large response when a sufficiently stro
perturbation disturbs the only stable stationary homogene
state@1#. Examples are the propagation of an action poten
along the axon of a nerve@2#, propagation of a grass fire o
a prairie, pulse propagation through cardiac cells@2#, reac-
tion diffusion @3#, or ecological systems@1#. While a vast
literature is devoted to the mathematical description
pulses propagating in unbounded media, less is known a
pulse generation from boundaries and propagation in fi
domains, particularly in multidimensional domains.

That boundaries and boundary conditions play an imp
tant role in pulse creation and annihilation is well understo
in the context of semiconductor instabilities@4#. Device ge-
ometry and bias conditions are crucial for instabilities a
related nonlinear dynamics to appear. Nice examples ca
found in the experiments by Willing and Maan on repea
pulse propagation in semi-insulating GaAs@5#. They consid-
ered rectangular samples with two attached parallel pla
contacts or with point contacts at different dc voltage. In
first situation, planar pulses were periodically generated
the cathode and moved towards the anode where they d
peared. This phenomenon is analogous to the well-kno
Gunn effect in bulkn-GaAs@6#. In the case of point contacts
circular waves were repeatedly generated at the cathode
vanished before arriving at the anode@5#. Theoretical studies
of self-sustained oscillations in semi-insulating GaAs
scarce even in one-dimensional geometries~cf. Ref. @7# and
references cited therein!. However, the observed phenome
can be qualitatively understood within the simpler Kroem
model for the Gunn effect in bulkn-GaAs@8#. An asymptotic
study of this model on a one-dimensional spatial support
be used to understand pulse propagation in samples
planar contacts@9#. A simple study of pulse propagation i
samples with point contacts could consist of analyzing
Kroemer model in a axisymmetric sample: a circular sam
of bulk n-GaAs with a point contact~cathode! at its center
and an attached concentric circular outer contact~anode!.
1063-651X/2001/65~1!/016607~8!/$20.00 65 0166
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This configuration is known asCorbino geometry@4#. In this
paper, we carry out a numerical study of pulse dynamics
the Kroemer model with Corbino geometry. Depending
the dc voltage bias and contact resistivity, we observe
tionary field and current and self-sustained oscillations~pe-
riodic or not! due to pulse propagation and recycling. Puls
may or may not arrive at the anode before a new pulse
generated at the cathode. These results are presented in
III after a short description of the Kroemer model in Corbin
geometry given in Sec. II. The numerical results are int
preted by means of an asymptotic analysis in Sec. IV. Sec
V contains our conclusions and the numerical method we
is described in the Appendix.

II. EQUATIONS AND BOUNDARY CONDITIONS

The Kroemer model consists of the following equatio
and boundary conditions~in dimensionless units! for the
concentration of free carriers~electrons! n and the electric
potentialw:

]n

]t
1¹W •~nvW 2d¹W n!50, ~1!

¹2w5n21, ~2!

vW ~EW !5EW
11vsE

3

11E4
, ~3!

xWPSc : EW •NW 5r~nvW 2d¹W n!•NW and w50, ~4!

xWPSa : EW •NW 5r~nvW 2d¹W n!•NW and w5F. ~5!

Here Eqs.~1! and ~2! are the charge continuity and Poisso
equations, respectively. The dimensionless electric field
EW 5¹W w andE5uEW u. In these equations, the electron dens
has been scaled with the uniform concentration of donor
purities in the semiconductor,ND51015 cm23, and the elec-
tric field with the field characterizing the intervalley transf
©2001 The American Physical Society07-1
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responsible for the negative differential mobility involved
the Gunn oscillation,ER53.1 kV/cm. Distances and time
have been measured with the dielectric length and the die
tric relaxation time, l 15eER /(eND)'0.276 mm and
l 1 /(m0ER)'1.02 ps, respectively (m0 is the zero-field elec-
tron mobility; see, e.g.,@10# for details!. The unit of electric
potential isERl 1'0.011 V. The carrier drift velocity of Eq
~3!, vW (EW ), is already written in dimensionless units, and
has been depicted in Fig. 1. We assume that the diffus
coefficient is constant,d'0.013~at 20 K!.

Boundary and bias conditions need to be imposed at
interfaces between semiconductor and contacts,Sc,a . Our
boundary conditions~4! and~5! assume that the normal com
ponents of the electron current density and the electric fi
are proportional at the semiconductor–contact bound
~Ohm’s law! @10#, ~in these equations,NW is the unit normal to
Sc,a directed towards the semiconductor!. For simplicity, we
choose all contact resistivitiesr to be equal. Bias condition
are chosen to bew50 at the cathodeSc ~injecting contact!
and w5F ~the applied voltage! at the anodeSa ~receiving
contact!. Typically d.0 is very small, so that diffusion mat
ters only inside boundary layers near the contacts or in
thin shock waves@10,9#. The latter are charge accumulatio
that will be treated simply as discontinuities of the elect
field @9,10#. Thus diffusion effects may be left out of th
conservation equation~1! when interpreting the results. If w
set d50, the first boundary condition in Eq.~5! should be
omitted.

We can write an Ampe`re’s equation for the total curren
density ~electronic plus displacement!, jW, by eliminating n
from Eq. ~1! using Eq.~2!

¹W • jW50,

with

jW5~11¹2w!vW 2d ¹W ~¹2w!1
]EW

]t
. ~6!

FIG. 1. Drift velocities and Ohm’s law.v(E)5uvW (EW )u has a
maximumvM533/4/4 at E5EM51/31/4 ~for vs50), followed by a
region of negative differential mobility forE.EM . At large fields
E@1, the electron velocity monotonically decreases to a valuevs ,
which may be zero.
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In the Corbino geometry considered in this paper, this eq
tion can be simplified further. Letr c andr a.r c be the radii
of cathode and anode, respectively. The electric field
current density are now directed along the radial direct
EW 5E(r ,t)rW/r , E(r ,t)5]w(r ,t)/]r , and jW5J(t)rW/r 2, so that
Eq. ~6! becomes

]E

]t
1v~E!F11

1

r

]~rE !

]r G2d
]

]r F1

r

]~rE !

]r G5
J

r
, ~7!

where 2pJ(t) is the current through the external circu
i (t)5*Sc

jW•NW dA52pJ(t). Equation~7! for E(r ,t) andJ(t)
should be solved with the following bias and boundary co
ditions

1

LEr c

r a
E dr5f, ~8!

E5rS J

r
2

]E

]t D at r 5r c ,r a , ~9!

whereL[r a2r c andf5F/L.
It is known ~see, e.g.,@10#! that planar dipole waves ma

appear in long samples whenr.4/3, for which the straight
line j 5E/r representing Ohm’s law intersects the drift v
locity curve j 5v(E) at a point (Ec , j c) on the second branch
of this curve, as sketched in Fig. 1.~In particular,Ec'r1/4

and j c'r23/4 for larger.! This is the case we will conside
in the present paper.

III. NUMERICAL RESULTS

We have solved numerically Eqs.~7! and ~8! together
with the boundary conditions~9! at r 5r c andr 5r a . Appro-
priate initial conditions were given forE(r ,0). Parameter
values werer52, d50.013,r c510 andr a550 and 90~i.e.,
L540 and 80 resp.!. The biasf was used as a control pa
rameter for two different electron velocity curvesvs50 and
vs50.1, representing zero and nonzero saturation veloc
at high electric fields. These parameter values are approp
for n-GaAs and are consistent with previous studies@10#.
Consider first the characteristic current-voltage curveJ(f)
of Fig. 2. There we can mark three different regimes, alrea
present in experiments@5#.

Regime I.0,f,fa'0.168. Stable solutions are statio
ary andJ(f) is well approximated by a straight line wit
slope'31.5.

Regime II.fa,f,3fa/2'0.25. Above the onset bia
for current oscillations, there are small-amplitude (10–20
of the overall current signal! sinusoidal current self-
oscillations. The oscillation maxima and minima are abo
Jc'5.4 andJmin'4, respectively. The electric field profile i
a triangular pulse, which is recycled at the cathode, it
vances and soon disappears atr'25 ~quenched-mode oscil
lation!. See Fig. 3.

Regime III.3fa/2,f,fv . The upper critical biasfv is
finite for vs.0 ~e.g., fv'15 if vs50.1) and infinite for
vs50. There are large-amplitude (60% of the overall curre
7-2
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AXISYMMETRIC PULSE RECYCLING AND MOTION IN . . . PHYSICAL REVIEW E65 016607
signal! current self-oscillations. These oscillations are mos
time periodic, although there are narrow bias intervals
aperiodic oscillations. Their maximaJmax(f) are always
close toJc , while their minimaJmin(f) take values on a
wider range of currents. Electric field profiles consist
moving triangular pulses. Forf.fv , the stable field profile
is again stationary as shown in Fig. 4. These results qua
tively agree with the experimental observations of se
sustained oscillations in semi-insulating GaAs reported
Ref. @5#. The experimental samples were rectangular a
contained two well-separated point contacts. It was obser
that self-oscillations of the current were due to circular
pole waves that were recycled at the cathode, expande
wards the anode, and vanished without ever reaching it.
current signal was similar to that in Fig. 5 below. Sem
insulating GaAs is described by model equations differ
from the Kroemer model. However, qualitative agreemen
experimental data with our results for the axisymmetric K
emer model suggest that a theoretical interpretation of s
oscillations similar to that in Sec. IV could also be approp
ate for semi-insulating GaAs.

We shall now describe the more interesting se

FIG. 2. Current-voltage characteristic curveJ(f) for vs50. If
0,f,fa , the stable electric field profile is stationary. Forf
.fa , we have depicted the maxima, minima, and time-avera
values of the current self-oscillations. There are small-amplit
current self-oscillations iffa,f,2fa/3, and large-amplitude
self-oscillations due to pulse recycling and motion if 2fa/3,f
,fv). fv is finite for vs.0 and infinite forvs50.

FIG. 3. Total current density~left! and electric field profiles
~right! for f50.18. The electric field profiles are depicted at t
times marked on the graph ofJ(t). The horizontal line in the latter
corresponds to the valueJc .
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oscillations in regime III, starting with a bias interval o
time-periodic oscillations. Stationary solutions and their s
bility properties will be described elsewhere.

A. Time-periodic oscillations for 0.35ËfË0.5 andvsÄ0

Figure 5 shows one period ofJ(t) for different bias val-
ues in this interval. The electric field profileE(r ,t) consists
of a single triangular pulse traveling towards the anode w
J(t) is increasing. WhenJ(t) decreases, one triangular puls
disappears and a new one appears at the cathode.
gradual increase of the current when there is only one p
in the sample lasts longer than the drop to low current v
ues. Notice that the current drop lasts the same for all b
values, while the stage of current growth increases withf.

This situation is remarkably different from that for th
one-dimensional geometry corresponding to parallel pla
contacts: the current signal is flat when there is only a sin
pulse far from the contacts and the stages of the cur
increase and drop are very short@10#. Other noticeable fea-
tures in Fig. 5 are~i! a new wave is nucleated asJ surpasses
a critical valueJc ~bias independent!; ~ii ! the current over-
shoot aboveJc decreases asf increases, and~iii ! there is a
second local maximum of the current, and the width of t
region between the two local maxima increases withf. Let
us explain in more detail the field profiles corresponding

d
e

FIG. 4. Stationary solution forf520, L580, andvs50.1. J
evolves towardsJ'6.2 greater thanJc55.77. The maximum elec-
tric field E1'26.75 is reached atRb'35.12. Field values at the
boundaries areE(r c)51.25 andE(r a)50.14.

FIG. 5. Current vs time during one period of the self-oscillatio
for fP(0.35,0.5). Values off are 0.36, 0.38, 0.4, 0.42, 0.44, 0.4
and 0.48, depicted from left to right, and the critical current
which a new wave is nucleated isJc55.39.
7-3
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L. L. BONILLA, R. ESCOBEDO, AND F. J. HIGUERA PHYSICAL REVIEW E65 016607
these stages of the self-oscillation.
Figures 6 and 7 show details of the current signal dur

one period of the self-oscillation forf50.38 andvs50.
Also shown are the maxima of the electric field for the d
ferent pulses that appear in this time interval. Fromt50 to
t5195, there is a single pulse moving towardsr a . This wave
is roughly a straight triangle of height and widthE1(t),
which is the maximum of the field inside the wave at timet.
The back of the pulse can be approximated by a shock w
located atRb(t). As we describe below, self-oscillations
the bias interval considered here involve creation of n
pulses and transient field disturbances at the cathode. In
7, Rb8(t) andRb

dis(t) are the locations of the maximum fiel

FIG. 6. Evolution ofJ(t) andE1(t) during one oscillation pe-
riod for f50.38 andvs50, during the time interval 0,t,Dt
'200, where there is a single pulse in the sample. Marked times
~1! 30, ~2! 180, ~3! 195, and~4! 215.

FIG. 7. Evolution ofJ(t) andE1(t) during one oscillation pe-
riod for f50.38 andvs50. ~a! Stage in which there are multipl
pulses.~b! Rb(t) during the multipulse stage.Rb

dis(t) andRb8(t) are
the locations of the maximum fields of the transient field dist
bance and the new pulse, respectively. Marked times are~3! 195,
~4! 215, ~5! 230, ~6! 248, and~7! 253.
01660
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of a new pulse and a transient pulselike field disturba
~both shed at the cathode!, respectively. Figure 8~a! shows
the electric field profile at the times marked~1! and ~2! in
Fig. 6. Figure 9~a! depicts the electric field near the cathod
A new pulse is shed from the cathode whenJ surpasses the
critical valueJc at time~4! in Fig. 6. Between times~3! and
~4! ~with J,Jc), a field disturbance is shed from the catho
and it shrinks rapidly as it advances. Eventually as the fi
pulse disappears~slightly after the time corresponding to th
second local maximum of the current!, the new pulse shed a
time ~4! remains the only one in the sample. A new oscil
tion period starts then. Figure 9 shows details of the fi
profiles when there are more than one pulses in the sam

B. Aperiodic current self-oscillations

For biasesf>0.5, periodic self-oscillations of the curren
alternate with voltage ranges of aperiodic oscillations. Fig
10 shows that the corresponding current signals may
rather complex, with several maxima and current oversho
aboveJc .

Typically several pulses are present during different ti
intervals of the self-oscillation. The leftmost pulse m
shrink as the second pulse increases, or it may reach it

re

-

FIG. 8. ~a! Electric field profile during the single-pulse stage
times ~1! and ~2! of Fig. 6. ~b! Details of the field profile near the
cathode: the slope atr c increases withJ; dE(r c)/dr50 for J5Jc

'5.24 at time~3!.

FIG. 9. ~a! Electric field profiles during the multipulse stage
times marked as~5!, ~6!, and~7! in Fig. 6 for f50.38 andvs50.
~b! Details of the unsuccessful attempt at shedding one pulse f
the cathode forJ,Jc . ~c! Successful nucleation of the new puls
after time~4!.
7-4
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AXISYMMETRIC PULSE RECYCLING AND MOTION IN . . . PHYSICAL REVIEW E65 016607
coalesce with that pulse. Meanwhile the rightmost pulse m
shrink or reach the anode. Pulses may be shed from the c
ode or may nucleate inside the sample. The resulting cur
signals may even be apparently chaotic. A detailed stud
all cases that are possible depending on the bias, will no
attempted here. Figure 11 depicts the local maxima of
current as a function of bias. A loss of periodicity at narro
bias intervals is apparent.

Comparing the casevs.0 to that withvs50, we observe
that the pulses move faster, the oscillations have smaller
plitudes and it is easier for several pulses to coexist w
vs.0. This may result in more complex shapes of the c
rent signal, as shown in Fig. 12. The current signal is p
odic in Figs. 12~a! and 12~b!, although the period is longer in
the latter due to separated current bursts. The current si
in Fig. 12~c! is aperiodic.

FIG. 10. ~a! Complex current signalJ(t) for f50.5 and a time
interval Dt'650. ~b! Same forf50.52 andDt'400. ~c! Three-
pulse electric field profile forf50.52 andDt'400. In all cases,
vs50. In ~a! and ~b!, the horizontal line marks the critical curren
Jc .

FIG. 11. Poincare´ diagram depicting current maxima vs bia
illustrating loss of periodic oscillations in narrow bias interva
Parameters arer c510, r a550, andvs50.
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IV. INTERPRETATION OF THE NUMERICAL
RESULTS

In order to understand the shape ofJ(t) in the time peri-
odic regime and the fact that the pulses may vanish be
reaching the anode, we present in this section a qualita
description of the asymptotic oscillatory solution forr a@r c
@1. In this case there is a wide range of voltages for wh
the pulses are detached from the contacts during mos
their evolution time. A full analysis of the pulse dynamic
should include descriptions of the evolution of a pulse
from the contacts and of the generation of new pulses at
injecting contact. The latter process is essentially as for
planar case@10# when r c@1, because the effect of the geo
metrical divergence is then negligible around the catho
Analysis shows that, roughly, a pulse is shed when the c
rent increases toJ5Jc' j cr c , and then the current decreas
while the new pulse grows and separates from the cath
These results are in line with the numerical simulations
the preceding section.

In the remainder of this section we focus on the evolut
of a pulse detached from the cathode. As in the planar c
such a pulse is a straight triangle made of a trailing ed
which is a shock and a leading ramp which is a region
pleted of electrons@10#.

Consider first the region outside of the pulse. Time a
space derivatives can be neglected in Eq.~7! for this region,
which covers most of the sample, leading to the appoxim
solution v(E)5J/r , which impliesE(r ,t)5E1(J/r ), where
E1( j ),E2( j ) are the two solutions ofv(E)5 j for vs, j
,vM . If J!r , the first branch ofv(E) is linear, and we have
E(r ,t)'J/r . The area under this stationary field profile
Fout5* r c

r aE1(J/r )dr'J ln(ra /rc).

The speed of trailing edge of the pulse, atr 5Rb(t), is
given by the equal area rule for a shock raising the field fr
E2 to E1 ; i.e., V(E1 ,E2)[*E2

E1v(E)dE/(E12E2). For

large pulses,E1@1 and the field immediately at the left o
the shock isE2,EM5O(1), sothat we may approximate

FIG. 12. Complex current signals forvs50.1, r c510, r a550
and several bias values:~a! f50.41 ~periodic signal!, ~b! f
50.411~periodic signal with a longer period due to current burst!,
and~c! f50.42~aperiodic signal!. In all cases,J(t) oscillates about
Jc55.77 with an approximate amplitude of 0.5.
7-5
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V~E1 ,E2!5vs1

E
E2

E1

@v~E!2vs#dE

E12E2
;vs1

C

E1
~10!

with

C5E
E1(vs)

`

@v~E!2vs#dE.

Here we have used thatV;vs andE2;E1(vs) asE1@1. If
vs50, then C5p/4 and V(E1 ,E2);p/(4E1). In this
case, the trailing front velocity is small, and small wav
move faster than large ones. Ifvs.0, then the waves move
at a speed close to the saturation speedvs .

The electron density at the leading ramp of the pulse
almost zero, so that the field obeys the Poisson equatio
1r 21](rE)/]r 5n'0, whose solution is

E~r ,t !5
r w

2 ~ t !2r 2

2r
'r w2r ~11!

in the pulse. Here the constant of integrationr w(t) is the
intersection between the prolongation of the ramp and thr
axis, and use has been made of the condition that the w
of the pulseW5r w2Rb'E1 satisfiesr w@W@1 to simplify
the result. The area of the triangular pulse isF in'E1

2 /2, and,
therefore, the bias condition~8! becomes

F5F in1Fout;
E1

2

2
1J lnS r a

r c
D . ~12!

The speed of the ramp,drw /dt, coincides with the speed
of the electrons immediately ahead of the pulse

drw

dt
5

J

r w
. ~13!

This result can also be obtained by inserting Eq.~11! andn
50 into Eq.~7!. Equations~12! and ~13!, along with

d~r w2E1!

dt
5vs1

C

E1
~14!

for the speed of the trailing shock~at Rb'r w2E1), suffice
to determine the time evolution ofJ, r w , and E1 from a
given initial state. Equation~14! can be rewritten as

dJ

dt
5

1

ln~r a /r c!
H C2S J

r w
2vsDA2FF2J lnS r a

r c
D G J ,

~15!

where Eqs.~12! and ~13! have been used.
The problem can be further simplified noticing that t

speeds of the shock and the ramp are nearly equal to
other during most of the pulse lifetime,

vs1
C

E1
5

J

r w
. ~16!
01660
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This occurs because the width of the pulse is small compa
with the total distance it travels in the sample. Then a m
match of the two speeds would lead either to the disapp
ance of the pulse or to its growth above the maximum s
allowed by the bias in a time of orderE1 /max(V,J/rw). This
time is short compared to the pulse lifetime. An algebr
relation betweenJ and r w can be obtained eliminatingE1

between Eqs.~12! and~16!. This is plotted as a dashed curv
in Fig. 13, which is the phase plane of Eqs.~13! and~15! for
the case withvs50. As can be seen, the trajectories te
rapidly to the lower branch of the dashed curve and then
along this branch obeying Eq.~13! until either:~i! r w reaches
its maximum possible value, corresponding to the turn
point T, or ~ii ! J reaches the critical valueJc for nucleation of
a new pulse, whichever happens first.

Whenvs50 the turning point is

JT5
2F

3 lnS r a

r c
D , r wT5

4

p lnS r a

r c
D S 2F

3 D 3/2

. ~17!

Then maximum radius of the pulse is eitherr wT or

r wc5
4Jc

p
A2FF2 lnS r a

r c
D G , ~18!

if Jc,JT . The time dependence ofJ from its minimum
value during an oscillation period can be obtained by in
grating Eq.~13! along the dashed line~nullcline! of Fig. 13.
In the present case ofvs50, Eq. ~13! can be written as@F
2(3J/2)ln(ra /rc)#dJ/dt5p2/32, with the help of Eqs.~12!
and ~16!. Upon integrating this equation,

J~ t !5JTS 12AS 12
Jmin

JT
D 2

2
t

tT
D , ~19!

tT5
32F2

3p2 lnS r a

r c
D . ~20!

FIG. 13. Phase plane (r w ,J) showing the nullclinedJ/drw50
~dash line! and the turning point forvs50 and a biasf50.6. The
thick line represents the trajectory of the solution for initial da
J(0)54.1 andr w526, until Jc'5.4 is reached.
7-6
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AXISYMMETRIC PULSE RECYCLING AND MOTION IN . . . PHYSICAL REVIEW E65 016607
We have used, as initial condition, the minimum value of
current during one oscillation period,J(0)5Jmin . A com-
parison of this approximation to a direct numerical soluti
of the whole problem is shown in Fig. 14.

For shorter samples such thatr a,r wc and large bias, the
pulse reaches the anode before its maximal radius. Then
situation resembles the one-dimensional Gunn effect wit
large voltage: a pulse reaches the anode before a new pu
nucleated at the cathode@10#. If we relax the assumption
vs50, we find that the pulse speed is faster according to

FIG. 14. Comparison of the asymptotic expressions forJ, E1 ,
and Rb with the results of direct numerical solution starting wi
J(t0530)5Jmin'2.4. Parameter values arer c510, r a590, f
50.6, andvs50. ~a! J(t) ~the horizontal line marks the critica
currentJc). ~b! E1(t). ~c! Rb(t). ~d! Maximum radius as a function
of bias. The numerically calculated maximum radius for the back
the pulse is compared tor wT and r wc . The difference of the latter
with the numerically calculatedRb is the pulse width.
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~10!. As in the case ofvs50, there is also a maximum radiu
of the pulse~for large enough samples!. In fact, the nullcline
dJ/drw50 has a turning point that can be found by solvi

vs

C
z31

3

2
z22F50, ~21!

for z.0 as a function ofF. ThenJT and r wT are given by

z5E15A2FF2JT lnS r a

r c
D G , ~22!

r wT5
JTz

C
. ~23!

An approximate solution of the system of Eqs.~13! and~15!
can be found as before. The maximum radius can be fo
by solving the simplified problem with the initial conditio
Jmin and calculating the time thatJ needs to reachJc . In
general, the pulse reaches either its maximum radius or
anode~depending onL andf! much earlier than in the cas
of vs50. This leads to small-amplitude current oscillatio
that may be rather irregular becauseJ may be aboveJc quite
often, thereby producing new pulses near the cathode.
Fig. 12.

V. CONCLUSIONS

We have studied numerically the repeated generation
motion of axisymmetric pulses in a two-dimensionaln-GaAs
sample with a Corbino geometry. The field inside the
pulses decreases as they advance and expand, so as to
pensate their larger extension. Simultaneously, the cur
increases until a critical value is reached, and a new puls
triggered at the central point contact. The current signal p
sents different patterns depending on the applied dc volt
bias. Just above the onset for self-oscillations, their am
tude is small and the pulse dies off shortly after it is gen
ated. For larger voltages, self-oscillations have larger am
tude and pulses may or may not reach the outer sam
boundary depending on the size thereof and bias. For s
ciently large samples, the pulse radius cannot surpass a m
mum value given by an approximate analytical formula. R
gions of aperiodic oscillations due to multipulse dynam
are interspersed with more regular periodic oscillations.
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APPENDIX: OUTLINE OF THE NUMERICAL METHOD

We have used an efficient numerical scheme for par
differential equations with an integral constraint describ
and proved to converge in Ref.@11#. Radial derivatives are
approximated by central differences, and a first-order
plicit Euler method is used to integrate the resulting diffe
ential equations in time. This procedure results in having
solve a system of (N11) linear equations for the values o
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the electric field andJ at timetn11 in terms of their previous
values. The block matrix formulation of this system is sho
in Fig. 15. ThereT, u, andv are aN3N tridiagonal matrix,
a 13N row vector, and aN31 column vector, respectively
Our system is, therefore, equivalent to

T•E1Jv5s, ~A1!

FIG. 15. Block matrix formulation of our numerical scheme
solve the equations forE andJ.
ce

c
er
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u•E1Ja5f. ~A2!

This system can be efficiently solved by solving the follo
ing two systems with the same tridiagonal matrix:

T•y5s, ~A3!

T•z5v. ~A4!

In terms ofy andz, we obtain

E5y2Jz, ~A5!

J5
u•y2f

u•z2a
. ~A6!

Thus we proceed by first obtaining the LU factorization ofT
and second carrying out two back substitution processe
solve Eqs.~A3! and ~A4!. Then Eqs.~A6! and ~A5! yield J
andE, respectively.
pl.
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