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Axisymmetric pulse recycling and motion in bulk semiconductors
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The Kroemer model for the Gunn effect in a circular geomé&@grbino disk$ has been numerically solved.
The results have been interpreted by means of asymptotic calculations. Above a certain onset dc voltage bias,
axisymmetric pulses of the electric field are periodically shed by an inner circular cathode. These pulses decay
as they move towards the outer anode, which they may not reach. As a pulse advances, the external current
increases continuously until a new pulse is generated. Then the current abruptly decreases, in agreement with
existing experimental results. Depending on the bias, more complex patterns with multiple pulse shedding are
possible.
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[. INTRODUCTION This configuration is known a8orbino geometry4]. In this
paper, we carry out a numerical study of pulse dynamics in
Propagation of pulses naturally occur in excitable mediathe Kroemer model with Corbino geometry. Depending on
which exhibit a large response when a sufficiently stronghe dc voltage bias and contact resistivity, we observe sta-
perturbation disturbs the only stable stationary homogeneou#nary field and current and self-sustained oscillatiue-
state[1]. Examples are the propagation of an action potentiafiodic or nob due to pulse propagation and recycling. Pulses
along the axon of a nenj], propagation of a grass fire on May or may not arrive at the anode before a new pulse is
a prairie, pulse propagation through cardiac ci2s reac- 9enerated at the cathode. These results are presented in Sec.
tion diffusion [3], or ecological systemgl]. While a vast !l after a short description of the Kroemer model in Corbino
literature is devoted to the mathematical description ofd€0metry given in Sec. Il. The numerical results are inter-
pulses propagating in unbounded media, less is known aboféted by means of an asymptotic analysis in Sec. IV. Section
pulse generation from boundaries and propagation in finit¢/ contains our conclusions and the numerical method we use

domains, particularly in multidimensional domains. is described in the Appendix.
That boundaries and boundary conditions play an impor-
tant role in pulse creation and annihilation is well understood Il. EQUATIONS AND BOUNDARY CONDITIONS

in the context of semiconductor instabilitig$]. Device ge-
ometry and bias conditions are crucial for instabilities and
related nonlinear dynamics to appear. Nice examples can
found in the experiments by Willing and Maan on repeate
pulse propagation in semi-insulating Gaj&§. They consid-
ered rectangular samples with two attached parallel planar an

contacts or with point contacts at different dc voltage. In the —_4V. (nJ— F\v n)=0, (1)
first situation, planar pulses were periodically generated at at
the cathode and moved towards the anode where they disap-

The Kroemer model consists of the following equations
d boundary conditiongin dimensionless unijsfor the
0concentration of free carrier®lectron$ n and the electric
potential ¢:

peared. This phenomenon is analogous to the well-known VZp=n—1, @)
Gunn effect in bulkn-GaAs[6]. In the case of point contacts,

circular waves were repeatedly generated at the cathode, and . Ll4wgER

vanished before arriving at the anddg. Theoretical studies v(B)= Eﬁ’ G

of self-sustained oscillations in semi-insulating GaAs are
scarce even in one-dimensional geomettig#s Ref. [7] and
references cited thereinrHowever, the observed phenomena
can be qualitatively understood within the simpler Kroemer R .. . .
model for the Gunn effect in bulk-GaAs[8]. An asymptotic XeZy: E-N=p(nv—46Vn):-N and ¢=®. (5
study of this model on a one-dimensional spatial support can

be used to understand pulse propagation in samples witHere Egs(1) and(2) are the charge continuity and Poisson
p|anar Contactig]_ A Simp|e Study of pu'se propagation in eﬂu%tions, reSp(iCtively. The dimensionless electric field is
samples with point contacts could consist of analyzing thee=V ¢ andE=|E|. In these equations, the electron density
Kroemer model in a axisymmetric sample: a circular sampléhas been scaled with the uniform concentration of donor im-
of bulk n-GaAs with a point contactcathode at its center  purities in the semiconductaNp= 10" cm™3, and the elec-
and an attached concentric circular outer contactode. tric field with the field characterizing the intervalley transfer

xe3.: E-N=p(nv—6Vn)-N and ¢=0, (4)
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V(E) In the Corbino geometry considered in this paper, this equa-
0.6 L . tion can be simplified further. Let, andr>r . be the radii
VM =5 Ohm’s law . L
M 7NN of cathode and anode, respectively. The electric field and
051 ! \\ current density are now directed along the radial direction
04l NN E=E(r,t)r/r, E(r,t)=de(r,t)/dr, andj =J(t)r/r?, so that
sl ! N\ V= Eq. (6) becomes
I i el (A - Vs=0(1)
02l i AN JE 1 9(rE) al1a(rE)| J
N —LTu(E)| 1+~ —o—|< ==
T N at roor ar|r or r
! [
00 f T : s T A where 27J(t) is the current through the external circuit,

E, E E i(t)=/s_j-NdA=27J(t). Equation(7) for E(r,t) andJ(t)
should be solved with the following bias and boundary con-
FIG. 1. Drift velocities and Ohm's law (E)=|v(E)| has a  ditions
maximumu ,=3%44 atE=E,,= 1/3¥* (for v,=0), followed by a
region of negative differential mobility foE>E,, . At large fields "a
E>1, the electron velocity monotonically decreases to a valye [Jr Edr=¢, ®)
which may be zero. ¢

J JE
responsible for the negative differential mobility involved in E=p<—— —
the Gunn oscillationEg=3.1 kV/cm. Distances and times root
have been measured with the dielectric length and the dielec-

. ) . whereL=r_,—r. andp=>/L.
tric relaxation time, |;=€Eg/(eNp)~0.276 um and . a ¢ .
1,/ (oER) ~1.02 ps, respectivelyy is the zero-field elec- It is known (see, e.g.[10]) that planar dipole waves may

tron mobility; see, e.g[,10] for detailg. The unit of electric appear in long samples when>4/3, for which the straight

- ; . . line j=E/p representing Ohm’s law intersects the drift ve-
potegt@l isEgl,~0.011 V. The carrier drift velocity of Eq. Iocit)J/ curvfaj =F1))(E) at agpoint E..j.) on the second branch
(3), v(E), is already written in dimensionless units, and it of this curve, as sketched in Ficg_ C(]m particular, E .~ 1
has been depicted in Fig. 1. We assume that the d'ﬁus'oandjc~p‘3’4 for largep.) This is the case we will consider

coefficient is constantﬁwo.o.ls(at 20 K). _ in the present paper.
Boundary and bias conditions need to be imposed at the
interfaces between semiconductor and contaEts,. Our
boundary condition$4) and(5) assume that the normal com-
ponents of the electron current density and the electric field \We have solved numerically Eq$7) and (8) together
are proportional at the semiconductor—contact boundaryith the boundary condition&) atr=r. andr=r,. Appro-
(Ohm’s law) [10], (in these equation&] is the unit normal to  priate initial conditions were given foE(r,0). Parameter
2. 5 directed towards the semicondudtdfor simplicity, we  values wergp=2, §=0.013,r,=10 andr,=50 and 9Q(i.e.,
choose all contact resistivitigsto be equal. Bias conditions L=40 and 80 resp. The bias¢ was used as a control pa-
are chosen to be=0 at the cathod&. . (injecting contagt  rameter for two different electron velocity curves=0 and
and o= (the applied voltageat the anode, (receiving v¢=0.1, representing zero and nonzero saturation velocities
contacj. Typically 5>0 is very small, so that diffusion mat- at high electric fields. These parameter values are appropriate
ters only inside boundary layers near the contacts or insidéor n-GaAs and are consistent with previous studi26l].
thin shock wave$10,9]. The latter are charge accumulations Consider first the characteristic current-voltage cuiye)
that will be treated simply as discontinuities of the electricof Fig. 2. There we can mark three different regimes, already
field [9,10]. Thus diffusion effects may be left out of the present in experimen{&].
conservation equatiofl) when interpreting the results. If we Regime 10< ¢< ¢,~0.168. Stable solutions are station-
set 6=0, the first boundary condition in E@5) should be ary andJ(¢) is well approximated by a straight line with
omitted. slope~31.5.
We can write an Ampe’s equation for the total current Regime Il.¢,<$<3¢,/2~0.25. Above the onset bias

density (electronic plus displacementf, by eliminatingn  for current oscillations, there are small-amplitude (10-20 %

at r=rq,r,, 9

IIl. NUMERICAL RESULTS

from Eq. (1) using Eq.(2) of the overall current signal sinusoidal current self-
oscillations. The oscillation maxima and minima are about
v. f= 0, J.~5.4 and],,;,~4, respectively. The electric field profile is

a triangular pulse, which is recycled at the cathode, it ad-
vances and soon disappears at25 (quenched-mode oscil-
lation). See Fig. 3.

Regime l11.3¢ [2< $p< ¢, . The upper critical biag, is
finite for vg>0 (e.g., ¢,~15 if vs=0.1) and infinite for
vs=0. There are large-amplitude (60% of the overall current

with

. L JE
j=(1+V2qD)v—5V(V2(p)+E. (6)
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i FIG. 4. Stationary solution fop=20, L=80, andv;=0.1. J
¢ g evolves towardgd~6.2 greater thad,=5.77. The maximum elec-
0 as. . . X tric field E,~26.75 is reached aR,~35.12. Field values at the
0 0.2 04 0.6 0.8 1 boundaries ar&(r.)=1.25 andg(r,)=0.14.

o oscillations in regime lll, starting with a bias interval of
FIG. 2. Current-voltage characteristic cur¥gg) for vs=0. If  time-periodic oscillations. Stationary solutions and their sta-

0<¢<d¢,, the stable electric field profile is stationary. Fer bility properties will be described elsewhere.
>¢,, we have depicted the maxima, minima, and time-averaged

values of the current self-oscillations. There are small-amplitude

current self-oscillations if¢,<$<2¢,/3, and large-amplitude A. Time-periodic oscillations for 0.35<¢<0.5 andvs=0
self-oscillat.ionls.due to pulse regyglipg and motion i$23<¢ Figure 5 shows one period d{t) for different bias val-
<¢.). ¢, is finite forvs>0 and infinite forvs=0. ues in this interval. The electric field profi(r,t) consists

. _ _ of a single triangular pulse traveling towards the anode when
signa) current self-oscillations. These oscillations are mostly (t) is increasing. Whed(t) decreases, one triangular pulse
time periodic, although there are narrow bias intervals Ofgiisappears and .a new one appearé at the cathode. The
aperiodic oscillations. Their maximaya{$) are always — graqual increase of the current when there is only one pulse
close toJ., while their minimaJpn(¢) take values on a i, the sample lasts longer than the drop to low current val-

wider range of currents. Electric field profiles consist of o5 Notice that the current drop lasts the same for all bias
moving triangular pulses. Fab> ¢,,, the stable field profile 51 es while the stage of current growth increases with

Is again stationary as shown in Fig. 4. These results qualita- thig sjtuation is remarkably different from that for the

tively agree with the experimental observations of self-5ne gimensional geometry corresponding to parallel planar
sustained oscillations in semi-insulating GaAs reported ingniacts: the current signal is flat when there is only a single
Ref. [5]. The experimental samples were rectangular andhise far from the contacts and the stages of the current

contained two well-separated point contacts. It was observeg .aase and drop are very shft0]. Other noticeable fea-

that self-oscillations of the current were due to circular di'tures in Fig. 5 ardi) a new wave is nucleated dsurpasses
pole waves that were recycled at the cathode, expanded 19- qjtica| valued, (bias independent (ii) the current over-

wards the anode, and vanished without ever reaching it. Th?hoot abovel, decreases ag increases, andii) there is a
C ’

.C“”e”? signal was simila}r to that in Fig. 5 b'elow. ,Semi'second local maximum of the current, and the width of the
insulating GaAs is described by model equations dn‘ferentl

o egion between the two local maxima increases with_et
from t_he Kroemer mpdel. However, quahtatn_/e agreement of explain in more detail the field profiles corresponding to
experimental data with our results for the axisymmetric Kro-
emer model suggest that a theoretical interpretation of self-
oscillations similar to that in Sec. IV could also be appropri-
ate for semi-insulating GaAs.

We shall now describe the more interesting self-

54
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FIG. 3. Total current densityleft) and electric field profiles FIG. 5. Current vs time during one period of the self-oscillations

(right) for ¢=0.18. The electric field profiles are depicted at the for ¢ < (0.35,0.5). Values o# are 0.36, 0.38, 0.4, 0.42, 0.44, 0.46,
times marked on the graph d{t). The horizontal line in the latter and 0.48, depicted from left to right, and the critical current at
corresponds to the valuk. . which a new wave is nucleated Jg=5.39.
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FIG. 8. (a) Electric field profile during the single-pulse stage at
times (1) and (2) of Fig. 6. (b) Details of the field profile near the
T ° 100 200 300 cathode: the slope at, increases withl; dE(r.)/dr=0 for J=J,

t ~5.24 at time(3).

FIG. 6. Evolution ofJ(t) andE_ (t) during one oscillation pe-
riod for ¢=0.38 andv =0, during the time interval &t<At
~ 200, where there is a single pulse in the sample. Marked times ar;
(1) 30, (2) 180, (3) 195, and(4) 215.

of a new pulse and a transient pulselike field disturbance
both shed at the cathogdeespectively. Figure (& shows

e electric field profile at the times markét) and (2) in

Fig. 6. Figure 9a) depicts the electric field near the cathode.
A new pulse is shed from the cathode whesurpasses the
these stages of the self-oscillation. critical valueJ, at time(4) in Fig. 6. Between time$3) and

Figures 6 and 7 show details of the current signal during4) (with J<J.), a field disturbance is shed from the cathode

one period of the self-oscillation fop=0.38 andvs=0.  and it shrinks rapidly as it advances. Eventually as the first
Also shown are the maxima of the electric field for the dif- pulse disappearslightly after the time corresponding to the
ferent pulses that appear in this time interval. FrorD to  second local maximum of the currénthe new pulse shed at
t=195, there is a single pulse moving towargs This wave  time (4) remains the only one in the sample. A new oscilla-
is roughly a straight triangle of height and widf. (t),  tion period starts then. Figure 9 shows details of the field
which is the maximum of the field inside the wave at time profiles when there are more than one pulses in the sample.
The back of the pulse can be approximated by a shock wave
located atR,(t). As we describe below, self-oscillations in
the bias interval considered here involve creation of new . . _—
pulses and transient field disturbances at the cathode. In Fig, For biasesp=0.5, periodic self-oscillations of the current

7, R(t) and Rgis(t) are the locations of the maximum field aternate with voltage ranges of aperlodm OSC|!Iat|ons. Figure
10 shows that the corresponding current signals may be

rather complex, with several maxima and current overshoots

B. Aperiodic current self-oscillations

6mo w0 W W 2808 abovel..
@ JO)® — Typically several pulses are present during different time
T T intervals of the self-oscillation. The leftmost pulse may
i q§ 16 shrink as the second pulse increases, or it may reach it and
&/ ©0 E,
y (trip) NG ) . 8 ; (a)
. N P 7 a
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FIG. 7. Evolution ofJ(t) andE_ (t) during one oscillation pe-
riod for ¢=0.38 andv;=0. (a) Stage in which there are multiple FIG. 9. (a) Electric field profiles during the multipulse stage at
pulses.(b) Ry(t) during the multipulse stagézg's(t) andR/(t) are  times marked a$5), (6), and(7) in Fig. 6 for ¢=0.38 andv;=0.
the locations of the maximum fields of the transient field distur-(b) Details of the unsuccessful attempt at shedding one pulse from
bance and the new pulse, respectively. Marked timeg3ra95, the cathode fod<J;. (c) Successful nucleation of the new pulse
(4) 215, (5) 230, (6) 248, and(7) 253. after time(4).
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FIG. 12. Complex current signals for,=0.1, r.=10, r,=50
and several bias valuesfa) ¢=0.41 (periodic signal, (b) ¢
=0.411(periodic signal with a longer period due to current byrsts
and(c) ¢=0.42(aperiodic signal In all cases](t) oscillates about
J.=5.77 with an approximate amplitude of 0.5.

FIG. 10. (a) Complex current signal(t) for #=0.5 and a time
interval At~650. (b) Same for¢p=0.52 andAt~400. (c) Three-
pulse electric field profile forp=0.52 andAt~400. In all cases,
vs=0. In (@) and (b), the horizontal line marks the critical current
J;.

IV. INTERPRETATION OF THE NUMERICAL

coalesce with that pulse. Meanwhile the rightmost pulse may RESULTS

shrink or reach the anode. Pulses may be shed from the cath- |n order to understand the shapeJgf) in the time peri-
ode or may nucleate inside the sample. The resulting curreridic regime and the fact that the pulses may vanish before
signals may even be apparently chaotic. A detailed study afeaching the anode, we present in this section a qualitative
all cases that are possible depending on the bias, will not baescription of the asymptotic oscillatory solution fgr .
attempted here. Figure 11 depicts the local maxima of thé>1. In this case there is a wide range of voltages for which
current as a function of bias. A loss of periodicity at narrowthe pulses are detached from the contacts during most of
bias intervals is apparent. their evolution time. A full analysis of the pulse dynamics
Comparing the case,> 0 to that withv =0, we observe should include descriptions of the evolution of a pulse far
s LS from the contacts and of the generation of new pulses at the
that the pulses move faster, the oscillations have smaller a

litud diti or f | oul : h r"iIﬁjecting contact. The latter process is essentially as for the
plitudes and it is easier for several pulses to coexist w Bjanar casé10] whenr > 1, because the effect of the geo-

vs>0. This may result in more complex shapes of the curetrical divergence is then negligible around the cathode.
rent signal, as shown in Fig. 12. The current signal is peri:analysis shows that, roughly, a pulse is shed when the cur-
odic in Figs. 12a) and 12b), although the period is longer in rent increases td=J.~j.r., and then the current decreases
the latter due to separated current bursts. The current signalhile the new pulse grows and separates from the cathode.
in Fig. 12c) is aperiodic. These results are in line with the numerical simulations of
the preceding section.

In the remainder of this section we focus on the evolution
of a pulse detached from the cathode. As in the planar case,

6 ; . . -
such a pulse is a straight triangle made of a trailing edge
.............. ] which is a shock and a leading ramp which is a region de-
....'.m ,.:................::::,::;c;gg!!il:,... pleted of 9|eCtr0n§10].
5| S B e ] Consider first the region outside of the pulse. Time and
N e space derivatives can be neglected in &g .for this region,
J - i . which covers most of the sample, leading to the appoximate
- 57 solutionv (E)=J/r, which impliesE(r,t)=E,(J/r), where
4t ., :;':g'“ T E1(j)<E,(j) are the two solutions of (E)=] for v <j
b & ) <vy . If I<r, the first branch of (E) is linear, and we have
I 4z 0.48’5 s ] E(r,t)er/r. The area under this stationary field profile is
3 d)outzfrjEl(J/r)de In(ra/ry).
0.2 0.4 0.6 03 1

The speed of trailing edge of the pulse,rat Ry(t), is
¢ given by the equal area rule for a shock raising the field from

o _ (E+ -
FIG. 11. Poincarediagram depicting current maxima vs bias E- 0 E,; ie., V(E, ’E‘)_IE,U(E)dE/(EJ“ E-). For
illustrating loss of periodic oscillations in narrow bias intervals. large pulsesg >1 and the field immediately at the left of
Parameters are,= 10, r =50, andv=0. the shock isE_<Ey=0(1), sothat we may approximate
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Ey
[v(E)—v ]dE
E

V(E, ,E_)=vgst+ ~vgt — (10
E.

E.—E_
with

c= [v(E)—v ]dE.
Ei(vg)

Here we have used th¥t~v, andE_~E (v) asE,>1. If
vs=0, then C=x/4 and V(E, ,E_)~a/(4E,). In this , )
case, the trailing front velocity is small, and small waves 0 40 80 120
move faster than large ones.d§{>0, then the waves move Iy
at a speed close to the saturation spegd

The electron density at the leading ramp of the pulse is F!G. 13. Phase plan& (,J) showing the nullclinedJ/dr,,=0

almost zero, so that the field obeys the Poisson equation @ash ling and the turning point fors=0 and a biasp=0.6. The
+r’1(?(rE)/o’!r=n%0 whose solution is thick line represents the trajectory of the solution for initial data

J(0)=4.1 andr =26, until J;~5.4 is reached.

2 2
E(r,t)= M%rw—r (11)  This occurs because the width of the pulse is small compared
2r with the total distance it travels in the sample. Then a mis-

match of the two speeds would lead either to the disappear-
ance of the pulse or to its growth above the maximum size
llowed by the bias in a time of ordé&r, /max{,J/r,). This

ime is short compared to the pulse lifetime. An algebraic
relation between) andr,, can be obtained eliminating ,
between Eqs12) and(16). This is plotted as a dashed curve

in the pulse. Here the constant of integratigg(t) is the
intersection between the prolongation of the ramp and the
axis, and use has been made of the condition that the wid
of the pulseW=r,— R,~E_ satisfies,>W=>1 to simplify
the result. The area of the triangular pulséig~ Eilz, and,

therefore, the bias conditioi8) becomes in Fig. 13, which is the phase plane of E¢3) and(15) for
2 " the case withvg=0. As can be seen, the trajectories tend
D=+ Dy~ 43 |n(_a>_ (12)  rapidly to the lower brapch of the dz.ish.ed curve and then rise
2 le along this branch obeying E¢L3) until either:(i) r,, reaches

its maximum possible value, corresponding to the turning
pointT, or (i) J reaches the critical valuk, for nucleation of
a new pulse, whichever happens first.

Whenv =0 the turning point is

The speed of the ramglr,, /dt, coincides with the speed
of the electrons immediately ahead of the pulse

dry J 13
W_ m ( ) 2d 4 2032
JT:—r, erZ—r ? . (17)
This result can also be obtained by inserting Ed) andn 3 In( —a) T |n(—a)
=0 into Eq.(7). Equations(12) and(13), along with Fe Fe
d(r,—E.) c Then maximum radius of the pulse is eithgp or
w
T = (19 4 .
C a
rwe=——\/ 2|P—In r_) ) (18
C

for the speed of the trailing shodkt R,~r,,—E ), suffice
to determine the time evolution of, r,,, andE, from a

: D . ; if J.<J;. The time dependence af from its minimum
given initial state. Equatiofil4) can be rewritten as

value during an oscillation period can be obtained by inte-

q grating Eqg.(13) along the dashed lingwlicline) of Fig. 13.
_‘]: ;(C_ i_v ) A/2ld—17 |n<r_a ] In the present case a@f;=0, Eq.(13) can be written ag®d
dt In(ra/re) w o re/ ]}’ —(33/2)In(r,/r)]dJ¥dt=7%/32, with the help of Eqs(12)
and(16). Upon integrating this equation,
(15 d(16) i ing thi i

where Egs(12) and(13) have been used. Jninl 2t
The problem can be further simplified noticing that the J(t)ZJT<1— (1— 3 ) _t_>’ (19

speeds of the shock and the ramp are nearly equal to each T T

other during most of the pulse lifetime, 5
32 o0
ro 16 tT_32| fa) ()
vt (16) #21n .
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(10). As in the case o ;=0, there is also a maximum radius
of the pulse(for large enough sampledn fact, the nulicline
dJ/dr,,=0 has a turning point that can be found by solving

Us 3 E 2
Cz~|—22 d=0, (21
0 100 200 300 400 500 for z>0 as a function ofb. ThenJ; andr,, are given by
t
r
12 . . — z=E+=\/2{<D—JTIn r—a)} (22)
- (b) ¢
T ] Jrz
s¢ T . FwT=—x. (23
N C
E, N
} N\ An approximate solution of the system of E¢$3) and(15)
ar = N ! i can be found as before. The maximum radius can be found
um. | V! . . o . L "
—— Asymp.| | h by solving the simplified problem with the initial condition
| ';i Jmin @nd calculating the time thal needs to reacld.. In
° 100 200 300 200 500 general, the pulse reaches either its maximum radius or the
anode(depending o and ¢») much earlier than in the case
t of vs=0. This leads to small-amplitude current oscillations
60

that may be rather irregular becausmay be abovd, quite

often, thereby producing new pulses near the cathode. See
Fig. 12.

V. CONCLUSIONS

o 100 200 300 200 00 We have studied numerically the repeated generation and
t motion of axisymmetric pulses in a two-dimensiongbaAs
sample with a Corbino geometry. The field inside these
120 T T r pulses decreases as they advance and expand, so as to com-
©—@ numerical pensate their larger extension. Simultaneously, the current
®—a rwc increases until a critical value is reached, and a new pulse is
r70 o—orwT ] triggered at the central point contact. The current signal pre-
(d) sents different patterns depending on the Qpplied dp voltage
20 . . . bias. Just above the onset for self-oscillations, their ampli-
0.2 0.3 0.5 0.6 0.7

FIG. 14. Comparison of the asymptotic expressionsJfdeE , ,

and R, with the results of direct numerical solution starting with

J(tp=30)=Jnin~2.4. Parameter values am=10, r,=90, ¢

=0.6, andv=0. (a) J(t) (the horizontal line marks the critical

tude is small and the pulse dies off shortly after it is gener-
ated. For larger voltages, self-oscillations have larger ampli-
tude and pulses may or may not reach the outer sample
boundary depending on the size thereof and bias. For suffi-
ciently large samples, the pulse radius cannot surpass a maxi-
mum value given by an approximate analytical formula. Re-
gions of aperiodic oscillations due to multipulse dynamics

currentdy). (b) E., (t). (©) Ry(t). (d) Maximum radius as a function are interspersed with more regular periodic oscillations.
of bias. The numerically calculated maximum radius for the back of

the pulse is compared tg,; andr,,.. The difference of the latter

with the numerically calculateR, is the pulse width.

current during one oscillation period(0)=Jyi,. A com-

parison of this approximation to a direct numerical solution

of the whole problem is shown in Fig. 14.
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APPENDIX: OUTLINE OF THE NUMERICAL METHOD

We have used an efficient numerical scheme for partial

For shorter samples such thgi<r,,. and large bias, the differential equations with an integral constraint described

pulse reaches the anode before its maximal radius. Then tlend proved to converge in Rdfl1]. Radial derivatives are
situation resembles the one-dimensional Gunn effect with approximated by central differences, and a first-order im-
large voltage: a pulse reaches the anode before a new pulseplicit Euler method is used to integrate the resulting differ-
nucleated at the cathoddO]. If we relax the assumption ential equations in time. This procedure results in having to
vs=0, we find that the pulse speed is faster according to Ecsolve a system ofN+ 1) linear equations for the values of
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u-E+Ja=¢. (A2)
This system can be efficiently solved by solving the follow-
r vIL|E =5 ing two systems with the same tridiagonal matrix:
T-y=s, (A3)

[« ][] T-z=v. (A4)

FIG. 15. Block matrix formulation of our numerical scheme to !N terms ofy andz, we obtain
solve the equations fdE andJ.

E=y-Jz (AS)
the electric field and at timet,,, 4 in terms of their previous u-y— ¢
values. The block matrix formulation of this system is shown =17 —a (AB)

in Fig. 15. ThereT, u, andv are aN X N tridiagonal matrix,
a 1XN row vector, and & X1 column vector, respectively. Thus we proceed by first obtaining the LU factorizatioriTof

Our system is, therefore, equivalent to and second carrying out two back substitution processes to
solve Eqgs.(A3) and (A4). Then Eqgs(A6) and (A5) yield J
T-E+Jv=s, (A1) andE, respectively.
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