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Temperature dependence of current self-oscillations and electric-field domains in sequential-
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We examine how the current-voltage characteristics of a doped weakly coupled superlattice depends on
temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs super-
lattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that
increasing temperature favors the appearance of current self-oscillations at the expense of static electric-field
domain formation. Our findings agree with available experimental evidence.
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[. INTRODUCTION the temperature is similar to lowering the SL doping. At low
temperature a multiplicity of purely static statesrrespond-
Manifestations of vertical transport in weakly coupled ing to the coexistence of low- and high-field domains in the
semiconductor-doped superlattic€SL's) include electric- SL) was observed. As the temperature increased, voltage
field domain formatiort;® multistability*~® self-sustained windows corresponding to self-oscillations appeared and
current oscillationg;® and driven and undriven chab$Sta-  widened in the SLI-V characteristicd® Experimental data
tionary electric-field domains appear in voltage-biased SL'svere interpreted by using the discrete drift mddetith a
if the doping is large enough.When the carrier density is fitted drift velocity!® These authors concluded that the peak-
below a critical value, self-sustained oscillations of the cur-to-valley ratio in the negative differential mobility region of
rent may appear. They are due to the dynamics of the domaitme drift velocity was crucial to understand the data. A model
wall separating the electric-field domains. This domain wallincluding both variation of the electron density in the wells
moves through the structure and is periodically recycled. Thand variation of the drift velocity with temperature was
frequencies of the corresponding oscillation depend on théherefore needetf.
applied bias and range from the kHz to the GHz regime. In a recent paper, we have been able to derive discrete
Self-oscillations persist even at room temperature, whichdrift-diffusion (DDD) models, including boundary condi-
makes these devices promising candidates for microwaviions, from microscopic sequential-tunneling modélgy
generatior!. Numerical calculation of the voltage-doping SL using our formulas for the field-dependent drift velocity at
phase diagram shows that only static electric-field domainslifferent temperaturegranging from 0 to 175 K we can
are possible for high enough SL doping. As the doping decompare numerical simulations of these simple discrete mod-
creases, voltage windows where current self-oscillations arels with the experimental data of Wargg al. Our results
possible open uff These windows may coalesce into ashow that increasing temperature facilitates current self-
single one as doping is further lowered and oscillations disescillations in the second plateau. Furthermore, our numeri-
appear below a critical doping value. Since doping is not aal results(based upon microscopically calculated drift ve-
feasible control parameter, other quantities affecting carrielocities) agree with the available experimental data and
density should be used to observe these behaviors. Feasil#gplain them quantitatively. We explain qualitatively why re-
control parameters are laser illumination in undoped SL'ggions of stationary states alternate with regions of self-
(Refs. 13—15 (which behaves qualitatively as well dopjng oscillations in the temperature-voltage phase diagram. Fi-
transverse magnetic field$, and temperatufé**’~1°in  nally and on the basis of our numerical simulations, we also
doped SL’s. explain why the frequency may have local maxima in the
Despite its practical and theoretical interest, the effect ofvoltage intervals where self-oscillations occur. That the fre-
temperature on electric-field domatfis?® and current self- quency may increase with voltage, while the average current
oscillations is still poorly understood. Early numerical calcu-simultaneously decreases, is thus a consequence of our
lations were performed with a fixed drift velocity corre- theory, not an anomalfy.8
sponding to a fixed temperatuféJsing the insight provided The rest of this paper is as follows. Section Il contains a
by these calculations and reasonable expectations on holvief description of the DDD model and a calculation of its
drift velocity depends with temperature, the fact that oscilla-transport coefficients and boundary conditions appropriate
tory voltage windows widen as the temperature increasefor the experimental sample of Wargd al. Results of nu-
was explained? More detailed experimental studies dealing merical simulations of this model and comparison with ex-
with the influence of temperature on self-oscillations haveperimental data are reported in Sec. lll. Section IV contains
appeared recently1° Experimental data show that raising our conclusions. A discussion of the qualitative theoretical
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analysis included in the experimental papers is presented in
the Appendix. 81
Il. DISCRETE DRIFT-DIFFUSION MODEL %\ 6l

The main charge transport mechanism in a weakly g
coupled SL is sequential resonant tunneling. The character- 3 4k 175K
istics of the samples experimentally studied in Ref. 18 are ;
such that the macroscopic time scale of the self-sustained &
oscillations is larger than the tunneling tintgefined as the 2F
time an electron needs to advance from one well to the next | 0K
one. In turn, this latter time is much larger than the inter-
subband scattering time. Then tunneling across a barrier is a A E— 6 8
stationary process with well-defined Fermi-Dirac distribu- Electric Field (10° V/m)

tions at each well. These distributions depend on the instan-

taneous values of the electron density and potential drops FIG. 1. Drift velocity vs electric field for different temperatures
and vary only on the longer macroscopic time scale. Théstarting at 0 K up to 175 K in 25 K stepsor a 40-well 14-nm
tunneling current density across each barrier in the SL maffaAs and 4-nm AlAs SL. Well doping iNp=2x 10" cm™2.

be approximately calculated by means of the transfer Hamil-

tonian method. The resulting formulas can be used to cal-voltage difference\V between the peaks of two consecutive
culate the transport coefficients and boundary conditions ofranches on the second plateau of the staticcharacteris-

the following DDD modef? tic is
e dF;  niu(Fy) Nis1— N
hl _ IR S AV=~ec3—€cr—27m7y. 3
N TIR D(F,) 2 J(1), (1) c3—€c2— 27y (3

Here e¢; is theith energy level of a given well. Foy=0,
F—F. =E(n-— wy. ) the field profile on the second plateau corresponds to two
Pl TP coexisting electric-field domains with fields eds
. o ) —ecy)/[e(d+w)] and (ec3— ec1)/[e(d+w)]. The domain
In these equations;, e, andNp, are well permittivity, minus  \ajis corresponding to two adjacent branches inlthedia-
the electron charge and two-dimensiof@D) doping in the  gram are located in adjacent wells. Then the voltage differ-
wells, respectivelyC=d+w is the SL period, wherdandw  ence should b&V~ ec3— ec». In the presence of scattering,
are the Wi‘dthS of barriers and wells, respectively. Equationtesonant peaks have finite widths which we take @s,2
(1) is Ampe’e’s law establishing that the total current densitythereby Obtaining Eqs) Here 2'7 is an adjustable parameter
eJ is the sum of displacement and tunneling currents. Thef the order of unity By using this formula and the mea-
latter consists of a drift ternenuv(F;)/£ and a diffusion  sured current in Ref. 17Figs. 2, 3, and % we find y=18
term,eD(F;)(n;.1—n;)/£%.** We have adopted the conven- meV at 1.6 K andy=23 meV at 140 K fory~0.6. Linear
tion (usual in this field that the current density has the sameinterpolation yields the temperature dependence of the

direction as the flow of electrons. Equati¢h) holds fori range we are interested in.
=1,... N—1. Equation(2) is the Poisson equation, and it Notice that the first peak of the velocity in Fig. 1 rapidly
holds fori=1,... N. Heren; is the 2D electron number disappears as the temperature increases for this particular

density at welli, which is singularly concentrated on a plane sample. This result might change if we assume different scat-
located at the end of the wel; is minusan average electric  tering amplitudes for each of the two first subbands of the
field on a SL period comprising theth well and theith  wells. Moreover, the different extrema of the velocity curve
barrier(well i lies between barrieris- 1 andi: barriers 0 and  shift to lower field values as the temperature increases. Thus
N separate the SL from the emitter and collector contacformation of electric-field domains and current self-
regions, respectively oscillations are expected for voltages on the second plateau
Figure 1 depicts the field-dependent drift velocity at dif- and higher. Multistable solution branches of the current-
ferent temperatures for SL parameter values of Ref. 17: 4Qoltage characteristic curve should also shift to lower volt-
periods of 14 nm GaAs and 4 nm AlAs and well doping ages and higher currents as the temperature increases, as ob-
Np=2x10" cm 2. It has been calculated from the micro- served in experiments.These effects could not be obtained
scopic tunneling current density by the procedure explainefrom the fitted drift velocity in Ref. 19. As the diffusion
in Ref. 23. The only adjustable parameter in the sequentiatoefficient decreases very rapidly with field, we can safely
tunneling formulas is the Lorentzian half-width of the scat-setD=0 in our DDD model for the experimentally observed
tering amplitudes;y. In a doped SL, the most relevant in- voltage range. The relevant model is thus the well-known
well scattering mechanisms are scattering with ionized imdiscrete drift model of Refs. 13 and 7 with the drift velocity
purities (low temperaturgs and with LO phonons(high  deduced from a microscopic calculation of the current plus
temperatures' To estimatey we have considered that the boundary conditiorfs (see Fig. 1
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To complete the description of our model, we need to

specify initial, boundary, and bias conditions. The dc voltage
bias condition is

~
T

LY Fi=V. (4)

W
T

Given thatD(F;)=0, we need only one boundary condition
specifyingF, (the field at the contact regienWe will as-
sume that there is an excess electron density in the first well
due to tunneling from the highly doped contact regfon,

Critical doping 10" em™)

1 s | L | s |
_ w 0 50 100 150
ny=(1+¢)Np. ) Temperature (K)
For f’m apprqpriately chosen qimenSionless positive constant FIG. 2. Bound for the critical doping as a function of tempera-
g,s thtlﬁecorwllgggnsi;lr?cﬁ% :eggﬁl'Qgs?éiﬁzgrggsrgﬁ;?g:;e (‘;‘;a\t’ﬁ?re (solid line). Experimental value employed in Refs. 17 and 18
- dashed ling
current’ The same behavior can be obtained from more
elaborated boundary conditions for the microscopic tuneling. .
current between theyemitter and the neighboringp%ﬁltho— %on, the agreerr_]ent Is rather good. We shqll see_below e
vided that contact doping is sufficiently highmic behav- g‘g;%iig}e;rte'rggﬁggzgrhen complete simulations of the
ior). Given the uncertainties inherent to contact specification, . o -
we have preferred to use the phenomenological boundar Results Qf our simulations are_presented in Figs. 3 and 4,
condition (5) instead orresponding to a 40-well SL with=4 nm, w=14 nm,
' NE=2x10" cm 2, and sample area 0<0.2 mnft. Figure
3 shows the time-averaged current-voltage characteristics of
such a SL for temperatures ranging from 110 to 150 K. In
this temperature range, there are voltage intergaith a flat
In this section, we shall numerically simulate the discrete@™) in which the SL current is stationary, interspersed in
drift model for different values of temperature. From formu- voltage intervals of current self-oscillations corresponding to
las (1) and (2), consideringD =0, recycling of charge monopoles. Thllszﬁzgrees with experimen-
tal results reported by Wangt al. For temperatures
e dF,  o(F;) e lower than 110 K or higher than 250 K, the ranges of self-
L EINY (F—F_ ) |=J(t) (6)  oscillations disappear. These figures are similar to those re-
e dt E D e( 1 i 1) ( ’ A g . 5
ported in the experiments of lat al.
We observe that the-V curve presents intervals in which

IIl. NUMERICAL SIMULATIONS AND COMPARISON
WITH EXPERIMENTS

N V the average current increases with voltage, followed by in-
> Fi=7. )
i=1
The corresponding drift curves are chosen among those de-
picted in Fig. 1 and the boundary condition will be E§) 2.96 o
with c=10"3.
A first interesting conclusion can be drawn effortlessly &
. o : £2.95 ,
from an analytical upper bound of the critical doping above 2 %, 5120.0 K
which there are stable static electric-field domain branches: 5
E2.04
Frn—Fu v =115.0K
NY. = gvp———. (8) ;
e(vm—vm) 2.3 o s, o, e, 50 112.5 K
In this formula,F\, andF, are the values of the electric field L . . . ! . »1100K
which correspond to the maximum and minimum of the drift 28 2-9V . V3 3.1
velocity (vy andv,,) on the second plateau. The tempera- oltage (V)

ture dependence of this critical doping is plotted in Fig. 2. gG. 3. |-v characteristics for different temperatures, showing
We observe that the critical doping increases with temperagtationary(dynami states with solidopen circles. The sample is
ture, indicating that the voltage range for which self- 3 40-well 14-nm GaAs and 4-nm AlAs SL. Well dopinghg! =2
oscillations exist increases as temperature does. In particulag, 10t cm2. Herec=10"3 has been used in the numerical simu-
Fig. 2 predicts a transition temperature at around 93 Kations. The curve corresponding to 150 K has been shifted
whereas about 140 K is experimentally measufed.De- —0.04 mA for clarity. Lines are plotted only for eye-guiding
spite the fact that the bour(@®) is only a rough approxima- purposes.
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FIG. 4. Current oscillation frequency vs voltage for some dy- i (well index)

namic dc bands of the curves shown in Fig. 3.
FIG. 5. Nomalized excess of charge at four instants of one

tervals in which the average current decreases. At lower terr%—eg'zofvo(fb)tgesggr\rf?é) ;eéz(;s\?";a;gg)szaé 41213 gg;ﬁ'fﬁ%efugi t

\?vir::g:r:s}sthreo m;esir,zgalgcctﬂcrslgri?sr:g? tgrl#rrirr];tuarr(.aes Vggsrgces are plotted in the insets with the four instants depicted:

. .pp g P ) ﬁ (solid liney, t, (dashed lines t5 (dot-dashed lines andt, (dot-

spondingly, Fig. 4 shows the frequency of the Self'dot-dashed lines

oscillations as a function of voltage. The frequency of the

self-oscillations in such an interval starts increasing but it

drops to a smaller value than the initial one at the upper Iimi'ENIth voltage; see the insets in Fig. 5. This rapid drop of the

of the interval. The amplitude of the self-oscillatiofisot minimum currentt and tl?e apdprOﬁlmzti invariance of tth?
shown hergvanishes at the upper and lower limits of eachMaxImuin current can be unhderstood from an asymp otie
) ; nalysis® the current approximately follows part of the ve-
voltage interval. This suggests that the branches of selfe W ) .
oscillations begin and end at supercritical Hopf bifurcations locity curve,eNDy(F)/L‘, during the motion of a monopole.
As the temperature increases, the region of negative diﬁer“[he.monopole IS Wcreated when the current Surpasses the
ential mobility in Fig. 1 is smoother and the frequency of theMaximum V,aIUGENDUM /L. Then the current decrgases with
self-oscillations increasesee Fig. 4 In the opposite tem- time unt|_l (_elther the monopole (_axns at the receiving cont_act
perature range, at low temperatures, the electric-field profile@" the minimum valueNpv,, /£ is reached. The first possi-
consist of basically two stationary domains joined by a doJility is attained at low voltages, the second one at high
main wall. The |-V characteristic curve has multiple voltages. The current osmllqﬂon starts with zero amplitude at
branches corresponding to stationary domains with the dohe lower end of a voltage interval, so that the current does
main wall located at different wells. This situation resemblesot depart too much from its maximum value. As the voltage
that obtained as voltage and doping are varied, provided thaficreases, the minima of the current at each oscillation pe-
the doping and reciprocal of temperature are assimilated. If0d decrease. What about the dependence of frequency with
Ref. 12 the phase diagram doping voltage of a doped SL wa¥oltage? It can be shovithat the oscillation period,, may
calculated. At low dopinghigh temperatune the electric e estimated from the following formula:
field inside the SL is almost homogeneous and stationary.
Above a critical value, branches of self-oscillations appear. —- L
In this region, there are voltage intervals of stationary P
electric-field profiles separated by intervals of self-
oscillations. The latter arise and disappégypically) as HereM is such thatN—M represents the number of wells
Hopf bifurcations from stationary states. Above a certaintraversed by the charge monopole during one oscillation pe-
doping (low temperaturg the intervals of self-oscillations riod, v, iS its average velocity, and; is the monopole
vanish and only stationary statésonsisting of two electric  formation time[which is an increasing function dfl (Ref.
field domains separated by a domain watmain. Notice 7)]. Now, M decreases with voltage owing to the dc bias
in Fig. 4 that there are voltage intervals where the oscillatiorcondition! so that the number of wells traversed by a mono-
frequency increases with voltage, while the average curremole grows as the voltage increagsse Fig. %. This means
decreases with voltage. This behavior was dubhedma- that the first term in Eq(9) decreases with voltage and the
lous by Wanget al.'® although it is conveniently explained second one increases with volta@ebecomedess negative
by the discrete drift model equations as shown by our preserfhus there is a competition between these two mechanisms:
simulations. A qualitative explanation of this behavior the first tries to make the oscillation period decrease with
follows. voltage (therefore the oscillation frequency increases with
First of all, it can be observed in the simulations that thevoltage, while the second term has the opposite effect. Near
maximum current during one oscillation period does not vanthe lowest voltage of an interval for which there are oscilla-
too much, while the minimum current drops precipituouslytions,v,.+~vwm, and the first term of Eq9) dominates. As

Um

M—Tf(

(€)

Umon
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the voltage increases, the oscillation amplitude increases ariglthe dc voltage bias condition. The functiflV;) is in fact
Umon decreases, so that the second term becomes more ira-piecewise linear N-shaped function common for all wells,
portant. Of course whether the maximum of the frequency i3 (V;); see Fig. 4 of Ref. 25.

reached immediately or not cannot be said from our rough Before commenting on this model, it is convenient to sim-
argument. Still, the results of our simulations show conclu-plify it by eliminating the charge densitieg . Notice that
sively that the oscillation frequency may reach a single maxiE€qgs. (A1) and(A2) imply the usual Ampee’s law

mum at voltage intervals where the current oscillates.

av,
K™ 1—+1,(V) =1, (A4)
IV. CONCLUSIONS dt

Starting from a microscopic sequential-tunneling modewherei=0,1, ... N andZ(t) is the total current® Thus the
of transport in weakly coupled SL, we have derived the field-model consists oN+2 equations, EqsiA3) and (A4) for
dependent drift velocity for a doped 14/4 SL at temperature®+2 unknowns,V;, i=0,1,... N, andZ. The currentZ
ranging from 0 to 175 K. We found that the first plateaucan be eliminated by adding all equatidwel) and using the
rapidly disappears as the temperature increases, and therefd@gt that the biagA3) is independent of time. The result is
we can set the diffusivity to zero in our DDD model to study the following mean-field model:
the second plateau. Our numerical simulations show that \
stable solutions change from stationary field profiles with  dV; k )
two coexisting electric-field domains at low temperature to gt = N+1 ,Zo [V =1i(Vpl, i=0,... N,
recycling moving monopoles, giving rise to current self- (A5)
oscillations at higher temperature. Voltage windows in the
[-V diagram appear and widen as temperature increases. We 1 N
observe as well an intrincate behavior of the oscillation fre- IT=—— Z (V). (AB)
guency as a function of the dc voltage for different tempera- N+1 =0

tures. These findings agree with and explain the experiment . . - -
data reported by Wanet al1’~1° %qua’uon(AS) is reminiscent of the problem of synchroniza

tion of coupled oscillators of zero frequency at zero tempera-
ture with the total current playing the role of order
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1. Critique of the WN model and its analysis

APPENDIX: THE THEORETICAL EXPLANATIONS The main physical objection to the WN model is that the
OF WANG et al. sequential-tunneling current across a bariigrdepends ex-
. . . ) _ plicitly on the electron densities at adjacent wells, as well as
The theoretlca_l interpretation of experimental result_s iNon electrostatic potentials. This is made patent by micro-
Refs. 17 and 18 is based upon a model proposed earlier byopic derivation$?* which are conspicuously absent in
Wang and NiuWN).*> Their model is mathematically analo- \wN's paper. One unphysical consequence is that WN's re-
gous to an earlier model of Laikhtm&M.t consists of & syits do not depend explicitly on well dopirigxcept that

system of rate equations 1:(V;) might change in some unspecified hocform with
doping]. However, experiments and theory show that stable
ﬂ_l_ Ve V- (V. (A1) static electric-field domains are formed at large doping,
ar - imaVie) =V, whereas self-sustained current oscillations appear for carrier

densities below a critical valu. Similarly, doping at the
Vi—V,_,;=Kkgq;, (A2) injecting contactignored in the WN modglselects the type
of charge density wavémonopoles or dipolgsresponsible
N for current self-oscillations.
E V.=V (A3) WN'’s mathematical study of their model contains a linear
=0 stability analysis of a given unspecified stationary state and
several unproven statemerisome of which are even incor-
with i=1,... N.?’ Equation(A1) is the charge continuity rect. Let us be specific. WN claim that all eigenvalues
equation for the excess 2D electron charge density attthe corresponding to inserting;=A;e' in the linearized equa-
well, g; (WN used the notation; instead ofg;). Herel;(V;) tions are real, which seems reasonable. However, later on,
is the tunneling current across thé barrier, which depends they claim that a time periodic solutiodimit cycle) can
only on the potential drop ther¥,; = u;— u;+1, Whereu; is  appear via a Hopf bifurcation from a stationary state. This is
the chemical potential at thigh well. Equation(A2) is the  an elementary error: a necessary condition of a Hopf bifur-
Poisson equation witk=471%/g, |=d+w. Last, Eq.(A3) cation is that a pair of complex conjugate eigenvalues cross
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the imaginary axis. The argument they ugkustrated in  fixed points having some negati¥% or that it wanders cha-
their Fig. 2 to “prove” the existence of a limit cycle rests on otically between different unstable fixed points.

unproven assumptions and, anyway, is not valid in more than

two dimensions. In fact, they claim that there exists a large

enough region about an unstable stationary state which is 2. Anomalies

invariant under the flow, because the potential difference be- Wang et al’® gave an explanation for the fact that the
tween two adjacent wells cannot exceed the applied bias. But '

no one has proved that this modebt to be confounded with self-oscillation frequgncy may increase with increasing bias_
physical reality posesses such a desirable property. Furtherwh”e’ at the same time, the mean current dgcreases. This
llegedly anomalous behavior has been explained by means

more, if there is only one stationary state and it become& _ ) ;
unstable by changing a control parameter, it will typically doOf the d|s_crete drift model in Sec. Ill. On the other hand, the
so by having one of its eigenvalues changing from negativéXpPlanations of Wangt al. of the “anomaly” are based on

to positive values(Recall that all eigenvalues are reathen  the claim that Eq(A4) with constantotal currentZ can have

the bifurcating solution will typically(codimension 1 be & limit cycle. They also give an estimate of its frequency.
stationary. Thus the situation of WN’s Fig. 2 is unrealistic: These arguments are clearly erroneous. In fact, all equations
inside the attractive region depicted, there should be anothéf EQ.(A4) are uncoupled i is a constant. Then E¢A4) is
stationary(atracting fixed point. Other more exotic possi- a one-dimensional autonomous dynamical system, which
bilities are that the flow escapes to decidedly unphysicatannot have limit cycles among its solutions.
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