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Temperature dependence of current self-oscillations and electric-field domains in sequential-
tunneling doped superlattices
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We examine how the current-voltage characteristics of a doped weakly coupled superlattice depends on
temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs super-
lattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that
increasing temperature favors the appearance of current self-oscillations at the expense of static electric-field
domain formation. Our findings agree with available experimental evidence.
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I. INTRODUCTION

Manifestations of vertical transport in weakly couple
semiconductor-doped superlattices~SL’s! include electric-
field domain formation,1–3 multistability,4–6 self-sustained
current oscillations,7–9 and driven and undriven chaos.10 Sta-
tionary electric-field domains appear in voltage-biased S
if the doping is large enough.11 When the carrier density is
below a critical value, self-sustained oscillations of the c
rent may appear. They are due to the dynamics of the dom
wall separating the electric-field domains. This domain w
moves through the structure and is periodically recycled. T
frequencies of the corresponding oscillation depend on
applied bias and range from the kHz to the GHz regim
Self-oscillations persist even at room temperature, wh
makes these devices promising candidates for microw
generation.7 Numerical calculation of the voltage-doping S
phase diagram shows that only static electric-field doma
are possible for high enough SL doping. As the doping
creases, voltage windows where current self-oscillations
possible open up.12 These windows may coalesce into
single one as doping is further lowered and oscillations d
appear below a critical doping value. Since doping is no
feasible control parameter, other quantities affecting car
density should be used to observe these behaviors. Fea
control parameters are laser illumination in undoped S
~Refs. 13–15! ~which behaves qualitatively as well doping!,
transverse magnetic fields,16 and temperature7,14,17–19 in
doped SL’s.

Despite its practical and theoretical interest, the effec
temperature on electric-field domains20–22 and current self-
oscillations is still poorly understood. Early numerical calc
lations were performed with a fixed drift velocity corre
sponding to a fixed temperature.7 Using the insight provided
by these calculations and reasonable expectations on
drift velocity depends with temperature, the fact that osci
tory voltage windows widen as the temperature increa
was explained.14 More detailed experimental studies deali
with the influence of temperature on self-oscillations ha
appeared recently.17–19 Experimental data show that raisin
0163-1829/2001/64~11!/115311~6!/$20.00 64 1153
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the temperature is similar to lowering the SL doping. At lo
temperature a multiplicity of purely static states~correspond-
ing to the coexistence of low- and high-field domains in t
SL! was observed. As the temperature increased, volt
windows corresponding to self-oscillations appeared a
widened in the SLI -V characteristics.18 Experimental data
were interpreted by using the discrete drift model13 with a
fitted drift velocity.19 These authors concluded that the pea
to-valley ratio in the negative differential mobility region o
the drift velocity was crucial to understand the data. A mo
including both variation of the electron density in the we
and variation of the drift velocity with temperature wa
therefore needed.19

In a recent paper, we have been able to derive disc
drift-diffusion ~DDD! models, including boundary condi
tions, from microscopic sequential-tunneling models.23 By
using our formulas for the field-dependent drift velocity
different temperatures~ranging from 0 to 175 K!, we can
compare numerical simulations of these simple discrete m
els with the experimental data of Wanget al. Our results
show that increasing temperature facilitates current s
oscillations in the second plateau. Furthermore, our num
cal results~based upon microscopically calculated drift v
locities! agree with the available experimental data a
explain them quantitatively. We explain qualitatively why r
gions of stationary states alternate with regions of s
oscillations in the temperature-voltage phase diagram.
nally and on the basis of our numerical simulations, we a
explain why the frequency may have local maxima in t
voltage intervals where self-oscillations occur. That the f
quency may increase with voltage, while the average cur
simultaneously decreases, is thus a consequence of
theory, not an anomaly.17,18

The rest of this paper is as follows. Section II contains
brief description of the DDD model and a calculation of
transport coefficients and boundary conditions appropr
for the experimental sample of Wanget al. Results of nu-
merical simulations of this model and comparison with e
perimental data are reported in Sec. III. Section IV conta
our conclusions. A discussion of the qualitative theoreti
©2001 The American Physical Society11-1
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analysis included in the experimental papers is presente
the Appendix.

II. DISCRETE DRIFT-DIFFUSION MODEL

The main charge transport mechanism in a wea
coupled SL is sequential resonant tunneling. The charac
istics of the samples experimentally studied in Ref. 18
such that the macroscopic time scale of the self-susta
oscillations is larger than the tunneling time~defined as the
time an electron needs to advance from one well to the n
one!. In turn, this latter time is much larger than the inte
subband scattering time. Then tunneling across a barrier
stationary process with well-defined Fermi-Dirac distrib
tions at each well. These distributions depend on the ins
taneous values of the electron density and potential dr
and vary only on the longer macroscopic time scale. T
tunneling current density across each barrier in the SL m
be approximately calculated by means of the transfer Ha
tonian method.5 The resulting formulas can be used to c
culate the transport coefficients and boundary conditions
the following DDD model:23

«

e

dFi

dt
1

niv~Fi !

L 2D~Fi !
ni 112ni

L 2
5J~ t !, ~1!

Fi2Fi 215
e

«
~ni2ND

w!. ~2!

In these equations,«, e, andND
w are well permittivity, minus

the electron charge and two-dimensional~2D! doping in the
wells, respectively.L5d1w is the SL period, whered andw
are the widths of barriers and wells, respectively. Equat
~1! is Ampère’s law establishing that the total current dens
eJ is the sum of displacement and tunneling currents. T
latter consists of a drift termeniv(Fi)/L and a diffusion
term,eD(Fi)(ni 112ni)/L 2.24 We have adopted the conven
tion ~usual in this field! that the current density has the sam
direction as the flow of electrons. Equation~1! holds for i
51, . . . ,N21. Equation~2! is the Poisson equation, and
holds for i 51, . . . ,N. Here ni is the 2D electron numbe
density at welli, which is singularly concentrated on a plan
located at the end of the well.Fi is minusan average electric
field on a SL period comprising thei th well and thei th
barrier~well i lies between barriersi 21 andi: barriers 0 and
N separate the SL from the emitter and collector cont
regions, respectively!.

Figure 1 depicts the field-dependent drift velocity at d
ferent temperatures for SL parameter values of Ref. 17:
periods of 14 nm GaAs and 4 nm AlAs and well dopin
ND

w5231011 cm22. It has been calculated from the micro
scopic tunneling current density by the procedure explai
in Ref. 23. The only adjustable parameter in the sequen
tunneling formulas is the Lorentzian half-width of the sc
tering amplitudes,g. In a doped SL, the most relevant in
well scattering mechanisms are scattering with ionized
purities ~low temperatures! and with LO phonons~high
temperatures!.1 To estimateg we have considered that th
11531
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voltage differenceDV between the peaks of two consecuti
branches on the second plateau of the staticI -V characteris-
tic is

DV'eC32eC222hg. ~3!

Here eCi is the i th energy level of a given well. Forg50,
the field profile on the second plateau corresponds to
coexisting electric-field domains with fields (eC2
2eC1)/@e(d1w)# and (eC32eC1)/@e(d1w)#. The domain
walls corresponding to two adjacent branches in theI -V dia-
gram are located in adjacent wells. Then the voltage dif
ence should beDV'eC32eC2. In the presence of scattering
resonant peaks have finite widths which we take as 2hg,
thereby obtaining Eq.~3!. Here 2h is an adjustable paramete
of the order of unity.2 By using this formula and the mea
sured current in Ref. 17~Figs. 2, 3, and 4!, we find g518
meV at 1.6 K andg523 meV at 140 K forh'0.6. Linear
interpolation yields the temperature dependence ofg in the
range we are interested in.

Notice that the first peak of the velocity in Fig. 1 rapid
disappears as the temperature increases for this partic
sample. This result might change if we assume different s
tering amplitudes for each of the two first subbands of
wells. Moreover, the different extrema of the velocity cur
shift to lower field values as the temperature increases. T
formation of electric-field domains and current se
oscillations are expected for voltages on the second pla
and higher. Multistable solution branches of the curre
voltage characteristic curve should also shift to lower vo
ages and higher currents as the temperature increases, a
served in experiments.19 These effects could not be obtaine
from the fitted drift velocity in Ref. 19. As the diffusion
coefficient decreases very rapidly with field, we can saf
setD[0 in our DDD model for the experimentally observe
voltage range. The relevant model is thus the well-kno
discrete drift model of Refs. 13 and 7 with the drift veloci
deduced from a microscopic calculation of the current p
boundary conditions23 ~see Fig. 1!.

FIG. 1. Drift velocity vs electric field for different temperature
~starting at 0 K up to 175 K in 25 K steps! for a 40-well 14-nm
GaAs and 4-nm AlAs SL. Well doping isND

w5231011 cm22.
1-2
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TEMPERATURE DEPENDENCE OF CURRENT SELF- . . . PHYSICAL REVIEW B 64 115311
To complete the description of our model, we need
specify initial, boundary, and bias conditions. The dc volta
bias condition is

L(
i 51

N

Fi5V. ~4!

Given thatD(Fi)[0, we need only one boundary conditio
specifyingF0 ~the field at the contact region!. We will as-
sume that there is an excess electron density in the first
due to tunneling from the highly doped contact region,7

n15~11c!ND
w . ~5!

For an appropriately chosen dimensionless positive cons
c, this condition selects recycling of charge monopole wa
as the mechanism for self-sustained oscillations of
current.7 The same behavior can be obtained from m
elaborated boundary conditions for the microscopic tune
current between the emitter and the neighboring well23 pro-
vided that contact doping is sufficiently high~Ohmic behav-
ior!. Given the uncertainties inherent to contact specificat
we have preferred to use the phenomenological bound
condition ~5! instead.

III. NUMERICAL SIMULATIONS AND COMPARISON
WITH EXPERIMENTS

In this section, we shall numerically simulate the discr
drift model for different values of temperature. From form
las ~1! and ~2!, consideringD50,

«

e

dFi

dt
1

v~Fi !

L FND
w1

«

e
~Fi2Fi 21!G5J~ t !, ~6!

(
i 51

N

Fi5
V

L . ~7!

The corresponding drift curves are chosen among those
picted in Fig. 1 and the boundary condition will be Eq.~5!
with c51023.

A first interesting conclusion can be drawn effortless
from an analytical upper bound of the critical doping abo
which there are stable static electric-field domain branche11

NDc
w 5«vm

Fm2FM

e~vM2vm!
. ~8!

In this formula,FM andFm are the values of the electric fiel
which correspond to the maximum and minimum of the d
velocity (vM and vm) on the second plateau. The tempe
ture dependence of this critical doping is plotted in Fig.
We observe that the critical doping increases with tempe
ture, indicating that the voltage range for which se
oscillations exist increases as temperature does. In partic
Fig. 2 predicts a transition temperature at around 93
whereas about 140 K is experimentally measured.17,18 De-
spite the fact that the bound~8! is only a rough approxima
11531
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tion, the agreement is rather good. We shall see below
the agreement improves when complete simulations of
DDD model are carried out.

Results of our simulations are presented in Figs. 3 an
corresponding to a 40-well SL withd54 nm, w514 nm,
ND

w5231011 cm22, and sample area 0.230.2 mm2. Figure
3 shows the time-averaged current-voltage characteristic
such a SL for temperatures ranging from 110 to 150 K.
this temperature range, there are voltage intervals~with a flat
form! in which the SL current is stationary, interspersed
voltage intervals of current self-oscillations corresponding
recycling of charge monopoles. This agrees with experim
tal results reported by Wanget al.17,18 For temperatures
lower than 110 K or higher than 250 K, the ranges of se
oscillations disappear. These figures are similar to those
ported in the experiments of Liet al.19

We observe that theI -V curve presents intervals in whic
the average current increases with voltage, followed by

FIG. 2. Bound for the critical doping as a function of temper
ture ~solid line!. Experimental value employed in Refs. 17 and
~dashed line!.

FIG. 3. I -V characteristics for different temperatures, showi
stationary~dynamic! states with solid~open! circles. The sample is
a 40-well 14-nm GaAs and 4-nm AlAs SL. Well doping isND

w52
31011 cm22. Herec51023 has been used in the numerical sim
lations. The curve corresponding to 150 K has been shifte
20.04 mA for clarity. Lines are plotted only for eye-guidin
purposes.
1-3
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DAVID SÁNCHEZ, L. L. BONILLA, AND G. PLATERO PHYSICAL REVIEW B64 115311
tervals in which the average current decreases. At lower t
peratures the intervals of increasing current are wi
whereas the opposite occurs at higher temperatures. C
spondingly, Fig. 4 shows the frequency of the se
oscillations as a function of voltage. The frequency of t
self-oscillations in such an interval starts increasing bu
drops to a smaller value than the initial one at the upper li
of the interval. The amplitude of the self-oscillations~not
shown here! vanishes at the upper and lower limits of ea
voltage interval. This suggests that the branches of s
oscillations begin and end at supercritical Hopf bifurcatio
As the temperature increases, the region of negative di
ential mobility in Fig. 1 is smoother and the frequency of t
self-oscillations increases~see Fig. 4!. In the opposite tem-
perature range, at low temperatures, the electric-field pro
consist of basically two stationary domains joined by a d
main wall. The I -V characteristic curve has multipl
branches corresponding to stationary domains with the
main wall located at different wells. This situation resemb
that obtained as voltage and doping are varied, provided
the doping and reciprocal of temperature are assimilated
Ref. 12 the phase diagram doping voltage of a doped SL
calculated. At low doping~high temperature!, the electric
field inside the SL is almost homogeneous and station
Above a critical value, branches of self-oscillations appe
In this region, there are voltage intervals of stationa
electric-field profiles separated by intervals of se
oscillations. The latter arise and disappear~typically! as
Hopf bifurcations from stationary states. Above a cert
doping ~low temperature!, the intervals of self-oscillations
vanish and only stationary states~consisting of two electric
field domains separated by a domain wall! remain. Notice
in Fig. 4 that there are voltage intervals where the oscillat
frequency increases with voltage, while the average cur
decreases with voltage. This behavior was dubbedanoma-
lous by Wanget al.,18 although it is conveniently explaine
by the discrete drift model equations as shown by our pre
simulations. A qualitative explanation of this behavi
follows.

First of all, it can be observed in the simulations that t
maximum current during one oscillation period does not v
too much, while the minimum current drops precipituous

FIG. 4. Current oscillation frequency vs voltage for some d
namic dc bands of the curves shown in Fig. 3.
11531
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with voltage; see the insets in Fig. 5. This rapid drop of t
minimum current and the approximate invariance of t
maximum current can be understood from an asympt
analysis:8 the current approximately follows part of the ve
locity curve,eND

wv(F)/L, during the motion of a monopole
The monopole is created when the current surpasses
maximum valueeND

wvM /L. Then the current decreases wi
time until either the monopole exits at the receiving cont
or the minimum valueeND

wvm /L is reached. The first possi
bility is attained at low voltages, the second one at h
voltages. The current oscillation starts with zero amplitude
the lower end of a voltage interval, so that the current d
not depart too much from its maximum value. As the volta
increases, the minima of the current at each oscillation
riod decrease. What about the dependence of frequency
voltage? It can be shown7 that the oscillation periodTp may
be estimated from the following formula:

Tp5
L

vmon
M2Tf S vM

vmon
21D . ~9!

Here M is such thatN2M represents the number of wel
traversed by the charge monopole during one oscillation
riod, vmon is its average velocity, andTf is the monopole
formation time@which is an increasing function ofM ~Ref.
7!#. Now, M decreases with voltage owing to the dc bi
condition,7 so that the number of wells traversed by a mon
pole grows as the voltage increases~see Fig. 5!. This means
that the first term in Eq.~9! decreases with voltage and th
second one increases with voltage~it becomesless negative!.
Thus there is a competition between these two mechanis
the first tries to make the oscillation period decrease w
voltage ~therefore the oscillation frequency increases w
voltage!, while the second term has the opposite effect. N
the lowest voltage of an interval for which there are oscil
tions,vmon'vM , and the first term of Eq.~9! dominates. As

-

FIG. 5. Nomalized excess of charge at four instants of o
period of the current self-oscillations at 115 K. Voltages are~a!
2.824 V,~b! 2.829 V,~c! 2.837 V, and~d! 2.842 V. Real-time current
traces are plotted in the insets with the four instants depic
t1 ~solid lines!, t2 ~dashed lines!, t3 ~dot-dashed lines!, andt4 ~dot-
dot-dashed lines!.
1-4
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TEMPERATURE DEPENDENCE OF CURRENT SELF- . . . PHYSICAL REVIEW B 64 115311
the voltage increases, the oscillation amplitude increases
vmon decreases, so that the second term becomes more
portant. Of course whether the maximum of the frequenc
reached immediately or not cannot be said from our rou
argument. Still, the results of our simulations show conc
sively that the oscillation frequency may reach a single ma
mum at voltage intervals where the current oscillates.

IV. CONCLUSIONS

Starting from a microscopic sequential-tunneling mo
of transport in weakly coupled SL, we have derived the fie
dependent drift velocity for a doped 14/4 SL at temperatu
ranging from 0 to 175 K. We found that the first plate
rapidly disappears as the temperature increases, and ther
we can set the diffusivity to zero in our DDD model to stu
the second plateau. Our numerical simulations show
stable solutions change from stationary field profiles w
two coexisting electric-field domains at low temperature
recycling moving monopoles, giving rise to current se
oscillations at higher temperature. Voltage windows in
I -V diagram appear and widen as temperature increases
observe as well an intrincate behavior of the oscillation f
quency as a function of the dc voltage for different tempe
tures. These findings agree with and explain the experime
data reported by Wanget al.17–19
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APPENDIX: THE THEORETICAL EXPLANATIONS
OF WANG et al.

The theoretical interpretation of experimental results
Refs. 17 and 18 is based upon a model proposed earlie
Wang and Niu~WN!.25 Their model is mathematically analo
gous to an earlier model of Laikhtman.26 It consists of a
system of rate equations

dqi

dt
5I i 21~Vi 21!2I i~Vi !, ~A1!

Vi2Vi 215kqi , ~A2!

(
i 50

N

Vi5V, ~A3!

with i 51, . . . ,N.27 Equation~A1! is the charge continuity
equation for the excess 2D electron charge density at thei th
well, qi ~WN used the notationni instead ofqi). HereI i(Vi)
is the tunneling current across thei th barrier, which depends
only on the potential drop there,Vi5m i2m i 11, wherem i is
the chemical potential at thei th well. Equation~A2! is the
Poisson equation withk54p l 2/«, l 5d1w. Last, Eq.~A3!
11531
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is the dc voltage bias condition. The functionI i(Vi) is in fact
a piecewise linear N-shaped function common for all we
I (Vi); see Fig. 4 of Ref. 25.

Before commenting on this model, it is convenient to si
plify it by eliminating the charge densitiesqi . Notice that
Eqs.~A1! and ~A2! imply the usual Ampe`re’s law

k21
dVi

dt
1I i~Vi !5I, ~A4!

wherei 50,1, . . . ,N andI(t) is the total current.26 Thus the
model consists ofN12 equations, Eqs.~A3! and ~A4! for
N12 unknowns,Vi , i 50,1, . . . ,N, and I. The currentI
can be eliminated by adding all equations~A4! and using the
fact that the bias~A3! is independent of time. The result i
the following mean-field model:

dVi

dt
52

k

N11 (
j 50

N

@ I i~Vi !2I j~Vj !#, i 50, . . . ,N,

~A5!

I5
1

N11 (
j 50

N

I i~Vi !. ~A6!

Equation~A5! is reminiscent of the problem of synchroniz
tion of coupled oscillators of zero frequency at zero tempe
ture with the total current playing the role of orde
parameter.28 The oscillatorsVi try to achieve a stationary
state such thatI i(Vi)5I, given appropriate propertie
of the functions I i ~positive differential conductivity
dIi /dVi.0).29

1. Critique of the WN model and its analysis

The main physical objection to the WN model is that t
sequential-tunneling current across a barrier,I i , depends ex-
plicitly on the electron densities at adjacent wells, as well
on electrostatic potentials. This is made patent by mic
scopic derivations,1,23 which are conspicuously absent
WN’s paper. One unphysical consequence is that WN’s
sults do not depend explicitly on well doping@except that
I i(Vi) might change in some unspecifiedad hoc form with
doping#. However, experiments and theory show that sta
static electric-field domains are formed at large dopin
whereas self-sustained current oscillations appear for ca
densities below a critical value.11 Similarly, doping at the
injecting contact~ignored in the WN model! selects the type
of charge density wave~monopoles or dipoles! responsible
for current self-oscillations.9

WN’s mathematical study of their model contains a line
stability analysis of a given unspecified stationary state
several unproven statements~some of which are even incor
rect!. Let us be specific. WN claim that all eigenvaluesl
corresponding to insertingEi5Aie

lt in the linearized equa-
tions are real, which seems reasonable. However, later
they claim that a time periodic solution~limit cycle! can
appear via a Hopf bifurcation from a stationary state. This
an elementary error: a necessary condition of a Hopf bif
cation is that a pair of complex conjugate eigenvalues cr
1-5
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the imaginary axis. The argument they use~illustrated in
their Fig. 2! to ‘‘prove’’ the existence of a limit cycle rests o
unproven assumptions and, anyway, is not valid in more t
two dimensions. In fact, they claim that there exists a la
enough region about an unstable stationary state whic
invariant under the flow, because the potential difference
tween two adjacent wells cannot exceed the applied bias.
no one has proved that this model~not to be confounded with
physical reality! posesses such a desirable property. Furth
more, if there is only one stationary state and it becom
unstable by changing a control parameter, it will typically
so by having one of its eigenvalues changing from nega
to positive values.~Recall that all eigenvalues are real.! Then
the bifurcating solution will typically~codimension 1! be
stationary. Thus the situation of WN’s Fig. 2 is unrealist
inside the attractive region depicted, there should be ano
stationary~atracting! fixed point. Other more exotic poss
bilities are that the flow escapes to decidedly unphys
to
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fixed points having some negativeVi or that it wanders cha-
otically between different unstable fixed points.

2. Anomalies

Wang et al.18 gave an explanation for the fact that th
self-oscillation frequency may increase with increasing b
while, at the same time, the mean current decreases.
allegedly anomalous behavior has been explained by me
of the discrete drift model in Sec. III. On the other hand, t
explanations of Wanget al. of the ‘‘anomaly’’ are based on
the claim that Eq.~A4! with constanttotal currentI can have
a limit cycle. They also give an estimate of its frequen
These arguments are clearly erroneous. In fact, all equat
in Eq. ~A4! are uncoupled ifI is a constant. Then Eq.~A4! is
a one-dimensional autonomous dynamical system, wh
cannot have limit cycles among its solutions.
ng,

. B
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