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The dynamics of time-dependent, planar propagation of gaseous detonations is addressed on the
basis of a three-step chemistry model that describes branched-chain processes. Relevant
nondimensional parameters are the ratio of the heat release to the thermal enthalpy at the Neumann
state, the nondimensional activation energies for the initiation and branching steps, the ratio of the
branching time to the initiation time and the ratio of the branching time to the recombination time.
The limit of strong overdrive is considered, in which pressure remains constant downstream from
the leading shock in the first approximation, and the ratio of specific heatsg is taken to be near
unity. A two-term expansion in the strong overdrive factor is introduced, and an integral equation
is derived describing the nonlinear dynamics and exhibiting a bifurcation parameter, the reciprocal
of the product of (g21), the nondimensional heat release and the nondimensional branching
activation energy, with an acoustic correction. A stability analysis shows that, depending on values
of the parameters, either the mode of lowest frequency or a mode of higher frequency may be most
unstable. Numerical integrations exhibit different conditions under which oscillations die,
low-frequency oscillations prevail, high-frequency oscillations prevail, highly nonlinear oscillations
persist, or detonation failure occurs. This type of parametric analysis is feasible because of the
relative simplicity of the model, which still is more realistic than a one-step, Arrhenius chemical
approximation. In particular, by addressing the limit of slow radical recombination compared with
branching, explicit results are derived for the critical value of the bifurcation parameter, involving
the ratio of the recombination time to the induction time. The results help to clarify the general
nature of one-dimensional detonation instability and provide simplifications that can be employed in
efficiently relating gaseous detonation behavior to the true underlying chemistry. ©2001
American Institute of Physics.@DOI: 10.1063/1.1345880#
als
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NOMENCLATURE

A Frequency factor
b Bifurcation parameter defined in~2.23!
bc Critical value ofb at the Hopf bifurcation
bc1

, bc2
Values ofbc for the two most unstable modes

b̄ Modified bifurcation parameter defined in~5.19!

b̄c1
, b̄c2

Critical values of b̄ for the two most unstable

modes
cp Specific heat at constant pressure
d Overdrive parameter
E Activation energy
F Reactant
f Normalized reactant mass fraction
k Reaction-rate constant
M Third body
@M # Third-body concentration

a!Electronic mail: asanchez@ing.uc3m.es
7761070-6631/2001/13(3)/776/17/$18.00
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P Nondimensional period of the oscillations
Q Amount of heat released per unit mass of radic

consumed
q Nondimensional heat release
R Universal gas constant
T Temperature
Tc Crossover temperature
t i Induction time, given in~2.15! for the hydrogen–

oxygen system
u Nondimensional gas velocity
v Gas velocity relative to the shock of the stea

detonation
W Molecular weight
X Radical
XO2

Oxygen mole fraction

x Normalized radical mass fraction
YF Initial reactant mass fraction
y Geometrical coordinate
ys Location of the leading shock
© 2001 American Institute of Physics
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Greek Symbols

a Exponential growth rate of the temperature pert
bation

b Nondimensional activation energy
g Ratio of specific heats
QN Reduced temperature increment at the Neum

spikebBuN

QNc
Reduced crossover temperature defined in~3.2!

u Nondimensional temperature increment
« Ratio of the branching time to the recombinatio

time evaluated at the Neumann spike of the ste
detonation

«̄ Instantaneous value of the ratio of the branch
time to the recombination time at the Neuma
spike

k Acoustic parameter defined in~4.1!
n Ratio of the branching time to the initiation tim

evaluated at the Neumann spike of the stea
detonation

n̄ Instantaneous value of the ratio of the branch
time to the initiation time evaluated at the Ne
mann spike

I. INTRODUCTION

Steady, planar detonation structure, first explained in
pendently by Zeldovich, von Neumann, and Do¨ring ~ZND!,
involves a strong leading shock wave that heats the che
cally reactive material and thereby causes exothermic che
cal heat release to begin. The chemistry then proceeds in
high-speed subsonic flow behind the shock through chem
mechanisms that are gradually being understood bette
recent years. The present paper addresses influences on
nation structure and dynamics of a model chemical mec
nism that has been found to provide a very good descrip
of the chemistry that occurs in most gaseous detonati
This description pertains to branched-chain chem
kinetics.1

The ZND detonation structure is now known to be u
stable. Various instabilites in the inviscid flow associat
with the chemical heat release generate disturbances tha
back on the leading shock and cause the propagation t
unsteady and nonplanar. Much recent research has bee
voted to trying to clarify further the nature of these instab
ties ~e.g., Refs. 2–4!. In very strongly overdriven detona
tions, where the chemical heat release is sufficiently sm
compared with the thermal enthalpy behind the lead
shock, ZND detonations in ideal gases must be stable
cause the corresponding shock wave is stable, but this s
tion is not usually encountered experimentally. Most r
detonations are cellular, that is, they exhibit time-depend
multidimensional structures that involve interactions of d
ferent shock waves under the influence of chemical hea
lease. There is interest in clarifying structures of cellu
detonations. How the chemistry controls these structure
not well understood. It is known4 that ZND detonations are
multidimensionally unstable to any exothermic chemis
Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to A
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j Nondimensional mass-weighted coordinate d
fined in ~2.2!

j i Induction length defined in~2.14!
j̄ i Instantaneous value of the induction length d

fined in ~5.9!
r Density
s Complex exponential rate of the temperature p

turbation
s̄ Acoustically modified exponential rate (11k)s
t Nondimensional time defined in~2.1!
v Frequency of the temperature perturbation
v̄ Modified frequency (11k)v

Subscripts

B Branching reaction
I Initiation reaction
N Properties at the Neumann spike
R Recombination reaction
` Properties far downstream from the leading sho

Superscripts

o Properties of the steady detonation
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whatever, but the extent to which that instability affects t
final cellular structure is unclear. While most investigato
probably would agree that branched-chain kinetics of
type addressed here are significant in cellular detona
structure, the specific role of this chemistry has not be
clarified.

As a first stage in improving understanding of the infl
ence of this chemistry on cellular detonations, the pres
paper addresses the corresponding one-dimensional, t
dependent dynamics of unsteady, planar detonations.
planar problem is intrinsically simpler and yet sufficient
complex that much remains to be learned about it. In ad
tion, one-dimensional, pulsating detonations, known as g
loping detonations, have been observed experimenta
These generally occur for detonations under narrow confi
ment, where boundaries suppress the multidimensional,
lular behavior. The presence of the boundaries thus cle
influences galloping detonations. Since such boundaries
not present in the mathematical model addressed here, q
titative agreement of predictions with experiments on gallo
ing detonations is not expected. Although there could be
tuitous agreement, the extent of agreement that should
anticipated currently is entirely unknown. The purpose of
present paper is not to develop a theory that is well justifi
for comparison with experiment on galloping detonations
rather to determine the influences of the branched-ch
chemistry on the one-dimensional, time-dependent cont
In this sense, the present work concerns a model prob
designed to further advance our general understanding o
dynamics of gaseous detonations. In would be of interes
future work to study the extent to which the results can
compared with experiments on galloping detonations.

Most studies of planar detonation dynamics adopt o
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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step chemistry approximations. Since chemistry affects d
nation dynamics only by the sensible heat release that it
duces through energy conservation, the only relev
difference between one-step and multistep chemistry is
number of first-order differential equations that need to
addressed to describe the chemical heat release. There
for example, one-step approximations that can be anticip
to model branched-chain chemistry well,1 and simpler mod-
els with similar attributes have been employed recently2–4

Most of the research exercising one-step chemistry, howe
selects an exothermic Arrhenius process, usually of first
der with respect to fuel, which does a poor job of captur
the separate initiation, branching and recombination step
chain chemistry. There is, in addition, the possibility of mo
complex dynamics arising from the larger number of diffe
ential equations required for describing more complica
chemistry. For this reason, investigations of detonations w
multistep model chemical kinetics are of interest.

The present paper addresses detonation dynamics w
model for branched-chain chemistry motivated by consid
ations of real chemistry, such as that of the hydroge
oxygen system. The model is an extension of two-step ch
branching models often treated previously,5–9 the extension
being obtained by adding an initiation step to the branch
and recombination steps. While the initiation step is unn
essary when chain carriers are initially present or in flam
where they arrive by diffusion, in detonations initiation
essential for the chemistry to begin. Although models inclu
ing initiation are well known,10–13only two previous detona
tion studies appear to have addressed this type of kin
scheme.14,15 One14 treated multidimensional stability, while
the other15 is the previous investigation that is most close
related to the present study, from the viewpoint of the pr
lems addressed and the chemistry employed. The re
therefore is referred to Short and Quirk15 for further back-
ground information.

The present study differs from that of Short and Quirk15

in a number of ways. For example, the approximation
introduced here that the ratio of specific heats is near unit16

and the problem is formulated in terms of an integral eq
tion that depends on the distribution of the heat-release r
thereby extending an earlier development of this type2 to
include more detailed chemistry. These simplifications w
respect to the previous work15 lead to the occurrence o
fewer nondimensional parameters whose values need t
specified in parametric investigations and permit more co
plete analytical developments, rather than necessitating f
numerical generation of results. Certain conclusions also
fer. For example, it is found here that the most unsta
mode is not always the one of lowest frequency; the ana
cal simplifications facilitate such discoveries. Analytical a
proximations are developed here that ultimately enable c
cal bifurcation values and frequencies to be obtained enti
in closed form with reasonable accuracy for realistic che
istry.
Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to A
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II. PROBLEM FORMULATION

A. Chemistry model

As in previous work,15 we consider the initiation reac
tion

F→
I

X,

the branching reaction

F1X→
B

2X

and the recombination reaction,

X→
R

Products,

where F and X represent the reactant and radical of t
chemistry description. The reaction-rate constants of the
two reactions depend on the temperature,T, according tokI

5AIexp@2EI /(RT)# and kB5ABexp@2EB /(RT)#, whereR is
the universal gas constant,AI andAB are frequency factors
and EI and EB are activation energies. The values of the
two last quantities are such that the nondimensional act
tion energiesb I5EI /(RTN

o ) and bB5EB /(RTN
o ) evaluated

at the temperature of the steady detonation immedia
downstream of the shock waveTN

o are much larger than
unity, thereby causing the rates of initiation and recombi
tion to be very sensitive to small temperature variations.
typical chain-branching systems radical recombination
volves three-body collisions with zero activation energy. T
resulting temperature dependence of the associated rate
stant is very weak and is, therefore, neglected in the pre
development, where we assume the rate constant of the
combination reaction,kR5AR , to be independent of tem
perature. Most of the heat is generated through radical
combination, with Q denoting here the amount of he
released per unit mass of radicals consumed in that step.
initiation step typically is endothermic and branching sligh
exothermic, but their resulting enthalpy changes are of les
importance and are considered here to be negligible. In
approximation employed, therefore, the energetics is
same as that considered previously.15

B. Conservation equations

To study the propagation of one-dimensional overdriv
detonations with this chemistry, first lety denote the coordi-
nate in a laboratory frame of reference, withys(t) represent-
ing the instantaneous location of the leading shock wave
order to parallel the simplified description given in Ref.
we consider the limit (g21)!1, with g denoting here the
ratio of specific heats. This assumption is reasonably w
justified in fuel–air detonations, for which the elevated te
peratures found downstream from the leading shock w
cause the specific heats to increase significantly, givingg
.1.2 in typical applications. In this limit of almost equa
specific heats, the changes in temperature caused by pre
variations are negligible in the first approximation.2 Also, in
view of the large temperature sensitivity of the inducti
kinetics, which will be shown below to be mainly related
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the large value ofbB , only relatively small variations of the
detonation propagation velocity from its steady value
considered. Furthermore, attention is restricted to overdri
detonations with large values of the overdrive parameted,
defined as the square of the ratio of the detonation prop
tion velocity to the velocity of the corresponding Chapma
Jouguet detonation.

As explained in previous publications,2,3 the solution in
this case~strongly overdriven detonations with almost equ
specific heats and large temperature sensitivity of the ind
tion kinetics! can be found by considering the distinguish
limit bB;(g21)21*d@1. At leading order, it is found tha
the spatial and temporal pressure variations downstr
from the leading shock wave are negligible. Incorporat
these simplifying assumptions reduces the leading-o
problem to that of integrating the species and energy con
vation equations, while mass conservation provides an i
gral constraint on the solution.2 Acoustics enters in the solu
tion as a first-order correction in the asympto
development,3 resulting in a modified integral constraint wit
corrections of orderd21/2 to the critical conditions for the
onset of instability and to the periods of the resulting os
lations. In what follows, we develop first the leading-ord
solution corresponding to the branched-chain kinetics c
sidered here. The extension of the formulation to account
acoustic effects is presented later in Sec. IV.

To describe the solution, it is convenient to scale
time t with the constant recombination timeAR

21 according
to

t5ARt. ~2.1!

A dimensionless mass-weighted coordinate

j5
AR

rN
o vN

o Eys(t)

y

r~y8,t !dy8 ~2.2!

is then introduced, whererN
o andvN

o are the steady values a
the Neumann spike~immediately behind the shock! of the
density and gas velocity relative to the shock. The same
tation will be employed throughout the following develo
ment: The superscripto will represent properties of the
steady detonation, while the subscriptN will denote the val-
ues of the flow variables at the Neumann spike.

For simplicity, an equal molecular weight,W, is as-
sumed for all chemical species and a constant value of
specific heat at constant pressure,cp , is employed. Change
in mean molecular weight and specific heat across the d
nation can be expected to introduce relatively small qua
tative corrections in the results, but the essential physic
captured with the simplifications introduced here, which
low the species and energy equations to be written as4

]x

]t
1

]x

]j
5

f

«
$n exp@b Iu/~11u!#

1exp@bBu/~11u!#x%2x, ~2.3!
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] f

]t
1

] f

]j
52

f

«
$n exp@b Iu/~11u!#

1exp@bBu/~11u!#x%, ~2.4!

]u

]t
1

]u

]j
5qx, ~2.5!

while the continuity equation can be written in the form

]u

]j
5

]u

]t
1

]u

]j
. ~2.6!

In the formulation,x and f denote, respectively, the mas
fractions of the radical and the reactant scaled with the ini
reactant mass fraction,YF . The variableu5(T2TN

o )/TN
o

measures temperature changes with respect to the tem
ture at the Neumann spike of the steady detonation,TN

o .
Mass conservation is expressed in terms of the scaled ve
ity u5v/vN

o , where v is the gas velocity relative to the
shock of the steady detonation. The heat of reactionQ per
unit mass of fuel consumed is nondimensionalized to yi
q5(QYF)/(cpTN

o ), a parameter of order unity in overdrive
detonations.2 The particular chemistry addressed here ent
the problem through four different parameters evaluated
T5TN

o , namely, the two nondimensional activation energ
b I5EI /(RTN

o ) andbB5EB /(RTN
o ), the ratio of the branch-

ing time to the recombination time«5AR /@ABrN
o YF

3exp(2bB)/W# and the ratio of the branching time to th
initiation time n5@AIexp(2bI)#/@ABrN

oYF exp(2bB)/W#. In
the branching step, the temperature dependence of the a
tional density factor has been included inbB to avoid a
clumsy and irrelevant factor of (11u) in the denominator.

Equations~2.3!–~2.6! must be integrated with appropr
ate initial and boundary conditions. In the stability study p
sented below, the initial profiles considered will be those
the steady detonation. On the other hand, at the Neum
spike (j50) the condition of inert flow across the shoc
wave yieldsx50 and f 51, while the corresponding value
of the temperature and velocity,u5uN(t) and u5uN(t),
are functions of time related to the instantaneous propaga
velocity of the leading shock through the Rankine–Hugon
relationships. Since only small perturbations of the propa
tion velocity are considered, these relationships can be
earized to provide the equation

uN512
uN

g21
. ~2.7!

To close the problem, a radiation condition must in gene
be imposed far downstream from the shock. In strongly ov
driven detonations, in which the pressure perturbations
negligible, this radiation condition implies that the flow v
locity must approach its steady valueu5u`

o asj→`.2

To find this value, and also the equilibrium temperatu
of the steady detonation, linear combinations of~2.3!–~2.6!
can be integrated with]/]t50, and with uN

o 50 and uN
o

51, to giveuo5q@12(xo1 f o)# anduo511uo. As can be
seen, when chemical equilibrium (xo50 and f o50) is ap-
proached far downstream, the nondimensional flow veloc
and temperature of the steady detonation reach the valu
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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u`
o 511q, ~2.8!

andu`
o 5q, respectively. This last result shows by integr

ing the steady form of~2.5! over the entire region down
stream from the shock that the radical profile of the ste
detonation satisfies

E
0

`

xodj51. ~2.9!

C. Chemical-kinetic parameters

Realistic values for the four chemical-kinetic paramet
(bB , b I , «, andn) in general can be estimated for differe
chemical systems from their corresponding rate-limiti
steps. For instance, in H2–O2 combustion, these rate-limiting

steps are H21O2→
1

2OH ~initiation!, H1O2→
2

OH1O

~branching! and H1O21M→
3

HO21M ~recombination!,
where M represents a third body, its concentration be
@M#. Values of the associated reaction-rate constants ca
found in Ref. 17, for instance, yielding

b I524131/TN
o , bB58620/TN

o , ~2.10!

«5k3@M#/k2523.4p~TN
o !21.72exp~8620/TN

o !, ~2.11!

and

n5k1 /k254.8331024~TN
o !0.7exp~215511/TN

o !, ~2.12!

with the temperatureTN
o and post-shock pressurep expressed

in K and bar, respectively.
The temperature dependence of the initiation a

branching chemistry is seen from these values to be fa
strong, i.e., the conditionsb I@1 andbB@1 are in general
satisfied. It also can be seen that initiation reactions are v
slow, so that the inequalitiesn!1 andn!« always hold for
temperatures of practical interest. As a result, the initial ra
cal growth is very slow, and only negligibly small radic
concentrations occur behind the shock throughout mos
the so-called induction region. To estimate the length of t
region, j i , one can integrate the steady-state form of~2.3!
with f 51 andu50 to obtain the steady radical profile

xo5
n

12«
@exp@~12«!j/«#21#, ~2.13!

which is approximately valid in the induction region. Th
equation reveals that radical mass fractions of order unity
reached only after an induction length

j i5
« ln~n21!

12«
, ~2.14!

which is a function of the two chemical-time ratios« andn.
This nondimensional induction length can also be interpre
as the ratio of an induction timet i to the recombination time
AR

21 . For the hydrogen–oxygen system, the predicted ig
tion time becomes

t i5
2.33310215~TN

o !1.7exp~8620/TN
o !

pXO2

ln~n21!

12«
s, ~2.15!
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whereXO2
represents the initial O2 mole fraction and« andn

can be evaluated from~2.11! and ~2.12!, respectively.
A great deal of shock-tube data exists on ignition tim

of hydrogen–oxygen systems. More than a dozen paper
this topic can be identified in the literature. Such experime
indeed are measurements on very highly overdriven ste
planar detonations in the present terminology, and theref
it is possible to compare the predictions of~2.15! with these
experimental results. As an example, we compare in Fig
the induction times observed in the shock-tube experime
of Bhaskaranet al.18 with those obtained from~2.15! for
different values ofTN

o . In the experiments, the leading shoc
elevated the pressure of a stoichiometric mixture of hyd
gen and oxygen diluted with 55.6% N2 (XO2

50.148) to a
fixed valuep5 2.5 atm. As can be seen, the agreemen
reasonably good for the range of temperatures explored,
departures being somewhat more significant as the temp
ture decreases. Although Fig. 1 clearly indicates that
model chemistry used in this paper is relevant for hydroge
oxygen systems, more careful comparisons with a lar
number of experimental contributions would be necessar
evaluate the accuracy of~2.15! thoroughly. These compari
sons are beyond the scope of the present work but a
suitable topic for future research.

For a given pressure the condition«51 determines the
so-called crossover temperature,Tc ~for example,Tc.1500
K at p540 atm!, that defines the second explosion limit
H2–O2 mixtures.19 Equation~2.14! indicates that the induc
tion length becomes infinite as the crossover temperatur
approached. The chain-branching explosion is then repla
by a solution with small radical mass fractions, of ordern.
Since n!1, the time required to release an apprecia
amount of heat in this regime of slow combustion becom
extremely large. Although the presence of the initiation s
in the chemical model ensures that all of the heat is eve
ally released regardless of the initial temperature, for reali
values ofn the detonation thickness forTN

o below crossover

FIG. 1. The comparison of the induction timet i measured in the shock-tub
experiments of Bhaskaranet al. ~Ref. 18! ~squares! with the prediction of
~2.15! with p52.5 atm andXO2

50.148~solid line!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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is much too large to be significant. Therefore, in cha
branching systems of practical interest, e.g., hydroge
oxygen mixtures, detonations can only develop for values
TN

o above crossover, that is, values of« smaller than unity.
The ratioTc /TN

o was considered in previous work15 to be a
bifurcation parameter that was varied numerically to exh
different types of solutions. Because of the exponential
pendence of the branching rate on temperature, the valu
« becomes small as the Neumann temperature increas
small relative amount of orderbB

21 from crossover, so tha
small values of« are found under most conditions, includin
in particular those of strong overdrives. In view of the
considerations, we investigate in the following developm
the chemical-kinetic parameters in the ranges

bB;b I@1, n!«!1, ~2.16!

as they apply to the description of overdriven detonatio
with chain-branching kinetics.

The detonation structure that arises in this limit is exh
ited in Fig. 2, where the temperature and species profile
the steadily propagating detonation,uo(j), xo(j), and
f o(j), are plotted; dashed curves and those foruNÞ0 in Fig.
2 are to be discussed later. These profiles are obtaine
numerical integration of the equations

dx

dj
5

f

«
$n exp@b Iu/~11u!#1exp@bBu/~11u!#x%2x,

~2.17!

d f

dj
52

f

«
$n exp@b Iu/~11u!#1exp@bBu/~11u!#x%,

~2.18!

du

dj
5qx, ~2.19!

with x5u50 and f 51 at j50, the steady-state version o
~2.3!–~2.5!. The parametric values selected are«50.05, n

FIG. 2. The solid lines represent the steady profilesxo, f o anduo obtained
by integration of~2.17!–~2.19! with «50.05, n55.6031029, bB510, b I

510 andq50.3, and the corresponding modified radical profiles obtain
for uN560.05, while the dashed lines represent the approximate rad
profiles obtained from Eq.~5.8!.
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55.6031029, bB510, b I510 and q50.3, with the
chemical-time ratios chosen in this case such thatj i

5« ln n21/(12«)51. The induction, relatively rapid fue
consumption and slower radical recombination are eviden
this figure.

D. Integral evolution equation

As explained in Ref. 2, the hyperbolic nature of~2.3!–
~2.5! enables integration to be performed along the trajec
ries t2j5 constant. The composition and temperature o
given fluid particle thus can be obtained by solving~2.17!–
~2.19! with initial conditions atj50 given byx50, f 51,
andu5uN(t2j). The integration provides in particular th
radical mass fraction of the fluid particle located atj at a
given instantt

x5x@j,uN~t2j!#, ~2.20!

as a function of the Neumann temperatureuN(t2j) previ-
ously encountered by the fluid particle as it crossed
shock.

On the other hand, use of the expression for the he
release rate appearing in~2.5!, enables the integration o
~2.6! to be performed to give

u`
o 2uN5qE

0

`

xdj. ~2.21!

Combining now~2.7!, ~2.8!, ~2.20! and ~2.21! finally gives
the integral equation

uN~t!5
1

bBb S E
0

`

x@j,uN~t2j!#dj21D , ~2.22!

which controls the evolution ofuN(t), thereby determining
the dynamical behavior of the detonation. Following t
analysis of Clavin and He,2 the bifurcation parameter

b5
1

~g21!bBq
, ~2.23!

has been introduced in writing~2.22!. Because the heat re
lease occurs through recombination, the radical profile en
in the problem as an appropriately normalized heat-rele
distribution. In view of~2.9!, it is clear that steady detona
tions, those havinguN(t)50 and x(j,0)5xo(j), arise as
one of the possible solutions to~2.22!. It is shown below that
such steady solutions are stable only for values of the bi
cation parameterb above a critical value, at which the solu
tion undergoes a Hopf bifurcation. Theb of ~2.23! is evi-
dently different fromTc /TN

o , the crossover temperature rat
previously15 termed a bifurcation parameter, but it bea
some relationship to it, as will be seen. Equation~2.22! also
indicates that in the absence of chemical reaction the norm
ized constant temperature associated with the remain
piston-supported shock wave is

uN52
1

bBb
. ~2.24!

d
al
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



io

ing

ica

th

-
t i
nl
in

b
o
oc
th
r

io

in
f
-

ing
u

wi
e
n
d

ur
he

t
n

n-

ra
r

a
f
-

m
-
th
ax
on

is-
the
i-

me

ur-

ial
nd,

e.
, a
ed.

-

t
s

ith

ns
ne
n-
d
ges
ed.

. 3
and

and

in
ted
r-
ar

mes
ing
-
d-

de

782 Phys. Fluids, Vol. 13, No. 3, March 2001 Sánchez et al.
This value is clearly associated in particular with the solut
that arises when detonation quenching takes place.

Figure 2 shows effects of the variations of the lead
shock on the shape of the heat-release distributionx@j,uN#
that appears in the integral equation. In particular, rad
profiles corresponding touN560.05 are plotted along with
the steady distributionxo(j)5x@j,uN50#. As anticipated in
the development leading to~2.22!, small variations of the
shock propagation velocity, i.e., values ofuN!1, are ampli-
fied through the chemistry to give much larger changes in
heat-release distribution. For the particular values ofuN used
in the plot, the profilex@j,uN50# undergoes both a transla
tion of order unity and a non-negligible change of shape. I
shown below that this large temperature sensitivity is mai
associated with the large activation energy of the branch
step,bB .

III. STABILITY AND NONLINEAR DYNAMICS OF THE
SOLUTION

There are numerous physical situations in which sta
solutions become unstable when a parameter passes thr
a critical value, beyond which time-dependent behavior
curs. The laminar boundary layer is a classical example
exhibits instability above a critical Reynolds number. A co
responding bifurcation parameter for the present detonat
is the temperature-sensitivity parameterb21. Investigations
of departures from stable behavior can be made by solv
the governing equations numerically for different values ob
with different initial conditions. Stabilities of steady solu
tions also can be investigated analytically by introduc
small perturbations. Both of these approaches are purs
here to ascertain how the behavior of the system varies
b. Appropriate mathematical methods vary, involving alg
braic equations, differential equations or integral equatio
depending on the problem. Integral equations are involve
the present problem.

To investigate the behavior of the solution as the bif
cation parameterb is decreased, numerical integrations of t
nonlinear evolution equation~2.22! were carried out. In the
computations, the valuesbB5b I510 andq50.3 were se-
lected for the nondimensional activation energies and hea
reaction, respectively. Results including two differe
branching times,«50.15 and«50.05, were computed, with
the associated values for the initiation timen53.4631023

andn55.6031029 selected to give the nondimensional i
duction lengthj i51, that is, the induction timet i equal to
the recombination time. Variations of« and n about these
values also were investigated. Integration along the cha
teristics ~2.17!–~2.19! was performed with a fourth-orde
Runge–Kutta scheme with adaptive step size, and
Newton–Cotes method was employed for the quadrature
pearing in~2.22!. To facilitate the potential development o
instabilities, an initial perturbation intentionally was intro
duced externally by employing a low-accuracy sche
~second-order Runge–Kutta! in the computation of the start
ing steady profiles. For each calculation, the extension of
computational domain was varied to accommodate the m
mum induction length observed, with a maximum inducti
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length equal to 100 used near quenching. A uniformly d
tributed grid of up to 32 000 points was used to discretize
flow field. This uniform grid was distributed along the pos
tive t and j axes, while the adaptive Runge–Kutta sche
marched along the characteristics in integrating~2.17!–
~2.19!.

A. The Hopf bifurcation

The computations revealed that for values of the bif
cation parameterb above a critical valuebC the steady deto-
nation remains stable, i.e., the steady solutionuN50 is even-
tually recovered after a transition stage in which the init
perturbation exponentially decays to zero. On the other ha
asb is decreased belowbC the initial perturbation is seen to
grow, leading to an oscillatory solution of finite amplitud
To characterize the solution at the onset of the instability
linear stability analysis of the steady solution was perform
Introducing into ~2.22! infinitesimally small values of the
temperature perturbation,uN , with an exponential time de
pendence of the formuN}exp(st) leads to

b5E
0

` 1

bB
S dx

duN
D

uN50

exp~2sj!dj, ~3.1!

as an implicit equation fors5a1v i . To compute the above
integral, system~2.17!–~2.19! was differentiated with respec
to uN , providing three new ordinary differential equation
for the functionsdx/duN , d f /duN , anddu/duN . Integrating
then the resulting system of six differential equations w
initial conditions x5 f 215u5dx/duN5d f /duN5du/duN

2150, as corresponds touN50, provides in particular the
function (dx/duN)uN50 required to solve~3.1!. A two-
dimensional Newton iteration in the complex numbers was
then performed to identify the values for which solutio
exist; the convergence criterion adopted typically was o
part in 1024, and no convergence difficulties were encou
tered. Equation~3.1! applies only for unstable, neutral an
relatively weakly stable modes because the integral diver
for a,21, an uninteresting range that was not investigat

The growth ratea and the frequencyv corresponding to
the two modes with larger growth rate are shown in Fig
for the sets of chemical-kinetic parameters studied here,
for decreasing values of the bifurcation parameterb. As pre-
viously anticipated, a Hopf bifurcation takes place asb is
decreased below a critical value. The frequency values,
the corresponding values ofb of the neutrally stable solution
of the modes with the two lowest frequencies are given
Table I. In Fig. 3 a different mode is seen to be associa
with the instability of the steady solution for the two diffe
ent sets of conditions. Thus, for conditions sufficiently f
above crossover, as it is the case«50.05, the mode of
higher frequency dominates as the steady solution beco
unstable, while for larger values of the reduced branch
time « the Hopf bifurcation occurs first at the lower fre
quency. In comparison, for the particular conditions a
dressed by Short and Quirk,15 the Hopf bifurcation encoun-
tered was of the low-frequency type, with the other mo
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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only appearing marginally as a decaying perturbation of
different solutions computed.

B. The development of the oscillatory instability

The time evolution of the solutions corresponding to«
50.15 and«50.05 is exhibited in Figs. 4 and 5, respe
tively. To allow comparisons with subsequent analytical
sults, the reduced variableQN5bBuN is employed in the
plots, a selection that~3.1! indicates is appropriate. The dis
cussion here addresses only the upper curves in these fig
the lower curves being considered in the following subs
tion.

As can be seen from Fig. 4, the growth rate of the sec
mode in the case«50.15 is sufficiently negative for its ef

FIG. 3. The values ofa and v of the two modes of smaller frequenc
for j i51.0, bB5b I510 and q50.3 as obtained from~3.1! with
«50.05 (b50.90,0.75,0.65,0.50,0.40,0.36) and with «50.15
(b50.65,0.55,0.45,0.37,0.31).
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fect to be always negligible for all the cases shown. Fob
,bC1

50.593 the initial perturbation grows in time to give
long-period oscillatory solution, as can be observed for
stance in the caseb50.55. Qualitatively similar results ar
obtained asb is initially decreased frombC1

, with the result-
ing oscillations showing increasing amplitudes. The asso
ated periods increase from the valueP52p/v57.00 pre-
dicted by the linear stability analysis atb5bC1

. The linear
stability analysis is not able to predict the increase in per
away from the bifurcation point accurately. For instance,
b50.55 andb50.45 the corresponding periods of oscill
tions areP57.34 andP59.38, while the linear stability
analysis yieldsP57.15 andP57.67. In the solution that
emerges, the Neumann temperature, which is directly rela
to the propagation velocity of the leading shock wave,
seen to remain below that of the steady solution most of
time, exhibiting large overshoots of relatively short leng
Qualitatively similar oscillations are found in previous n
merical studies.2,15

In the case«50.05 exhibited in Fig. 5, both of the

TABLE I. The critical values ofb ~and the corresponding frequencies! of
the neutrally stable solution of the modes with the two lowest frequencie
obtained from Eq.~3.1!.

«50.05 «50.10 «50.15

n55.6031029:
bC1 (vC1) 0.667~0.864! 1.031~0.523! 1.276~0.374!
bC2 (vC2) 0.873~6.478! 1.855~3.183! 2.904~2.075!
n51.2331024:
bC1 (vC1) 0.374~1.346! 0.646~0.877! 0.861~0.660!
bC2 (vC2) 0.268~13.36! 0.593~6.579! 0.969~4.308!
n53.4631023:
bC1 (vC1) 0.245~1.719! 0.435~1.155! 0.593~0.897!
bC2 (vC2) 0.090~20.64! 0.205~10.22! 0.343~6.735!
FIG. 4. The time evolution ofQN5bBuN for decreas-
ing values of the bifurcation parameterb as obtained
from ~2.22! with «50.15, n53.4631023, bB510,
b I510, andq50.3.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. The time evolution ofQN5bBuN for decreasing values of the bifurcation parameterb as obtained from~2.22! with «50.05, n55.6031029,
bB510, b I510 andq50.3.
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modes identified above can be observed in the decaying
sient solution corresponding tob.bC2

50.873. Forb in the
range 0.873.b.0.667 the linear stability analysis predic
that the first mode remains stable, while the second m
does not. This is illustrated forb50.75, a case for which the
long-period oscillation associated with the first mode is s
to decay, while the second mode grows exponentially to
nally give an oscillatory solution of periodP50.97. Similar
results are obtained asb.bC1

is further decreased frombC2
;

the resulting oscillations have increasing amplitud
whereas the period remains practically invariant, and
agreement with the results of the linear stability analys
Note that the shape of the oscillations is markedly differ
from that of the oscillations associated with the long-per
mode seen in Fig. 4.

As expected from the results of the linear stability ana
sis, the rate of decay of the long-period oscillations decrea
asb is decreased, so that their effect remains in the solu
for a longer time. The results corresponding tob50.65 in-
dicate that this long-period modulation decays away even
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values of b below bC1
50.667. The resulting behavio

changes asb reaches a valueb.0.64, for which the ampli-
tude of the long-period oscillations is seen to increase w
time. The resulting time evolution is seen in the two plo
corresponding tob50.61. Although the oscillations corre
sponding to the second mode appear earlier because of
associated larger growth rate, the long-period oscillatio
also develop, so that both modes are eventually present in
resulting solution for long times. This behavior is seen in
solutions forb in the range 0.64.b.0.59. As the bifurca-
tion parameter is further decreased tob50.58, the effect of
the second mode is restricted to the initial transient, an
long-period oscillatory solution arises for large times, as s
in Fig. 5 for b50.50. The period of the emerging solutio
P59.40, differs from the valueP58.01 associated with the
first mode in the linear stability analysis forb50.50. When
the value ofb is further decreased, the transition to the lon
period oscillatory mode is faster and results in oscillatio
with increased values of both the amplitude and the per
in agreement with the behavior shown in Fig. 4.
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C. The crossover temperature: Dynamic quenching

Failure of the detonation is observed as the minim
temperature of the oscillatory solution approaches the cr
over value, a behavior previously encountered in Ref.
The branching time associated with each fluid particle
pends on the temperature increase that it experiences
crosses the shock wave. As can be concluded from~2.17!,

QNc
5bBS Tc

TN
o

21D 5
ln~«!

12 ln~«!/bB
, ~3.2!

defines the reduced crossover temperature at which the in
rates of branching and recombination are equal. Evalua
the above expression forbB510 givesQNc

522.305 and
QNc

521.595 for«50.05 and«50.15, respectively. Fluid
particles withQN,QNc

release only a small amount of hea
of ordern, as they cross the detonation. This reduced ene
input leads to smaller propagation velocities and to e
larger branching times, thereby eventually causing the fai
of the detonation.

This mechanism of detonation failure is illustrated
Fig. 5, where dashed lines represent the crossover temp
ture corresponding to«50.05. As the minimum postshoc
temperature approaches the crossover value, the period o
associated detonation increases. For instance, the solutio
b50.37 has a periodP555.24 with a minimum temperatur
QN522.08. Transition from the steady detonation w
QN50 to the chemically frozen shock wave takes pla
when the minimum temperature falls below crossover dur
the initial transient regime, a phenomenon clearly obser
for b50.36. In the small intermediate parametric ran
0.37.b.0.36 the solution becomes very dependent on
accuracy of the numerical scheme and on the length of
integration domain. Although transition to chaos may oc
in this parametric range~as observed away from the bifurca
tion point in previous numerical studies2,15!, this question is
not investigated further here because the range is small
the adopted integration techniques inappropriate. It may
noted that, in the quasi-frozen solution that emerges at
smallest value ofb shown, the radical mass fraction is o
ordern, yielding QN.21/b for the post-shock temperature
a result previously anticipated in~2.24!. Clearly, quenching
of a piston-supported detonation may take place only w
the temperature increase of the associated nearly chemi
frozen shock wave is such that21/b,QNc

.
A similar behavior is seen in Fig. 4. Because of t

relatively large value ofn employed in this case, nonnegl
gible heat release can also take place forQN slightly below
QNc . Pulsating oscillations with minimum Neumann tem
peratures below crossover, therefore, can exist, as see
b50.37. When the bifurcation parameter is reduced tob
50.31, this regime is no longer observed, and detona
quenching appears.

IV. ACOUSTIC EFFECTS IN MODERATELY
OVERDRIVEN DETONATIONS

The results presented above assume constant pressu
corresponds strictly to infinitely large values ofd, thereby
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neglecting the small pressure variations that appear in o
driven detonations with finite overdrives. These acoustic
fects can be incorporated by introducing asymptotic exp
sions for the flow variables in powers of the small parame

k5S g11

8g

q11

q

1

dD 1/2

, ~4.1!

of order d21/2, a development presented elsewhere.3 The
first-order correction is found to enter in the solution
modifying the leading-order integral constraint~2.22! to give

uN~t!5
1

bBb~11k!

3S E
0

`

x$j,uN@t2~11k!j#%dj21D . ~4.2!

Consideration of infinitesimally small temperature perturb
tions,uN , then leads to

b~11k!5E
0

` 1

bB
S dx

duN
D

uN50

exp~2s~11k!j!dj,

~4.3!

as a replacement for~3.1!. Comparison of~4.2! and ~4.3!
with their acoustic-free versions~2.22! and ~3.1! suggests
that, for overdriven detonations withd sufficiently larger
than unity, the effect of acoustics is limited to small corre
tions, of orderk;d21/2, to the period and amplitude of th
oscillations and to the critical value of the bifurcation para
eter b. The acoustic effects do not introduce qualitati
modifications for overdriven waves. Since in most applic
tions the overdrive factord remains belowd.5, these acous-
tic corrections must however in general be considered
increased accuracy.

Since the perturbative analysis leading to~4.2! and~4.3!
uses d as an asymptotically large quantity, the resulti
equations do not apply whend is of order unity, that is, for
weakly overdriven or Chapman–Jouguet detonations. Ne
theless, since the development used here embodies the
physics underlying the planar detonation instability, no n
phenomena are expected to arise as the degree of overdr
decreased, with differences in the stability character of
resulting detonations being only quantitative. This can
illustrated by direct comparison of the results of the pres
analysis with those obtained by Short and Quirk15 for a near-
Chapman–Jouguet detonation withd51.2. Their numerical
work employs the crossover temperatureTc /TN

o as a bifur-
cation parameter, with the rate of the initiation reaction at
Neumann spiken/«51.6231026 and the remaining param
etersq53, bB58, b I520, andg51.2 being held constan
in the computations. Evaluating~4.1! with these parametric
values yieldsk50.505 for the acoustic parameter, no long
a small quantity as a result of the weak overdrive.

The evolution withTc /TN
o of the growth rate and of the

frequency of the two most unstable modes obtained from
normal mode linear stability analysis of the complete n
merical solution~Fig. 2 in Ref. 15! are compared in Fig. 6
with the solution of ~4.3!. The value of «5exp@bB(1
2TN

o/Tc)# can be extracted from~3.2! as a function of the
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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crossover temperature. Therefore, the parametric stud
Ref. 15 for increasing values ofTc /TN

o with bB58 corre-
sponds in the present formulation to a parametric study in
branching rate«, with n51.6231026« and with the param-
eterb5@(g21)bBq#2150.208 being held constant. Resu
corresponding to the isobaric model (k50) are exhibited in
the plot along with those obtained withk50.505.

As can be seen, our analysis correctly predicts the qu
tative behavior of both stability modes. For instance,~4.3!
reproduces the pitchfork bifurcation associated with
mode of lower frequency, as well as the qualitative variat
of a and v for the higher-frequency mode. However,
previously anticipated, the quantitative agreement is po
with the results of our analysis overestimating significan
the frequencies and the growth rates of both modes. A
~4.3! fails to give the critical crossover temperature at t
onset of instability; the exact solution tends to be more sta
than the predictions derived with strong overdrives. It
however remarkable how the first-order correction for
acoustics improves significantly the quantitative results
the isobaric approximation, further supporting the use
~4.3! for calculating the stability characteristics of mode
ately overdriven detonations.

V. THE LIMIT OF SLOW RADICAL RECOMBINATION

The limit «!1, with post-shock temperatures far abo
the crossover value, is amenable to development of an
lytic description of the solution and reflects realistic con
tions for many detonations. The analysis of this limit to
derived here will provide, in particular, a simplified explic
expression for the evolution equation~4.2! that reproduces
the nonlinear dynamics previously exhibited in Figs. 4 an
with reasonable accuracy. This limit also serves to iden

FIG. 6. The values ofa andv of the two modes of smaller frequency fo
q53, bB58, b I520, andg51.2 as obtained from the stability analysis
the complete numerical problem withF51.2 ~SQ!, from ~4.3! with k50
and from~4.3! with k50.505~purely real roots are represented with dash
lines!.
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the key parameters that control the stability of the detona
and to determine, through a linear stability analysis of
resulting simplified description, the parametric depende
of each of the modes of instability that were previously d
cussed.

A. Asymptotic description for the heat-release law

Guided by the previous estimates, we select the initiat
rate such thatn!« and consider, in particular, the distin
guished limit« ln n21;1, for which the induction lengthj i

of ~2.14! is of order unity. Three different regions can the
be observed in the internal structure exhibited in Fig.
There exists an induction region that extends over 0,j,j i

in which x is exponentially small, with the effect of initiation
being relevant only in a sublayer of thickness« in this layer,
located immediately downstream from the shock wa
wherex is of ordern. The effect of branching then causesx
to grow slowly, eventually increasing to values of ord
unity at j.j i . There then exists a thin branching layer
thickness« ln(«21) across which fuel consumption is impo
tant. After fuel is depleted, radical recombination is the on
chemical process that remains active, giving an expon
tially decreasingx profile, as can be anticipated from~2.17!
with f 50. This general type of behavior has been seen
earlier work.20–22

With «!1 the effect of radical recombination is ver
limited in both the induction region and the branching lay
When heat release is associated only with radical recom
nation, the temperature remains approximately constant u
after the initiation and branching reactions are frozen, an
is therefore justified to neglect the spatial variation ofkI and
kB to study the evolution of the system. To see this mo
precisely, note that the temperature increment in the ini
layer where initiation is significant can be estimated fro
~2.19! to be of orderq«n. Therefore, the temperature varia
tion of the initiation reaction can be neglected altogether
~2.17!–~2.18! as long as the criterionq«nb I!1 is satisfied.
Similarly, since the thickness of the branching region, wh
x is of order unity, is of order« ln(«21), the temperature
increase that occurs prior to fuel depletion is a small quan
of order q« ln(«21), and can safely be neglected as long
q« ln(«21)bB!1. Even with non-neutral energetics of initia
tion and branching, in view of the small extent to whic
initiation proceeds, enthalpy changes associated with th
two steps remain negligible, provided only that the heat
lease in chain branching is small compared with that in
combination.

If these conditions are satisfied, thenu can be replaced
by uN in ~2.17! and ~2.18! to yield the problem

dx

dj
5

f

«̄
$n̄1x%2x, ~5.1!

d f

dj
52

f

«̄
$n̄1x%, ~5.2!

x~0!50, f ~0!51, ~5.3!

where
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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«̄5expF2
bBuN

11uN
G«,

~5.4!
n̄5exp@~b I2bB!uN /~11uN!#n,

are the modified values of the chemical-time ratios ass
ated with the instantaneous post-shock temperature. N
that if departures from the steady solution are limited to v
ues ofuN such thatbBuN and (b I2bB)uN remain no larger
than order unity, then the limitn!«!1 with « ln n21;1
also implies that

n̄! «̄!1 and «̄ ln n̄21;1, ~5.5!

yielding the same type of limit for these functions.
The solution to~5.1!–~5.3! in the distinguished limit

~5.5! can be computed by matched asymptotic expansio
The development, which is not included here, is a straig
forward extension of previous work on a related cha
branching–chain-breaking problem.23 The asymptotic analy-
sis provides in particular the reduced representation

x5
n̄$exp@~12 «̄ !j/ «̄ #21%

11 n̄exp@~12 «̄ !j/ «̄ #

3~12 «̄ ln$11 n̄exp@~12 «̄ !j/ «̄ #%!, ~5.6!

for the radical profile, an expression valid in the first a
proximation until fuel is depleted atj5 «̄ ln(n̄21«̄21)/(12«̄).
This expression must be supplemented by the approxim

profile
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x5~12 «̄ ln «̄21!expF2S j2
«̄ ln~ n̄21«̄21!

12 «̄
D G , ~5.7!

corresponding to the recombination region. Combining n
~5.6! and ~5.7! finally gives the approximate expression

x@j,uN#5
11H~j2 j̄ i !$exp@2~j2 j̄ i !#21%

11exp@2~12 «̄ !~j2 j̄ i !/ «̄ #
, ~5.8!

whereH() denotes the Heaviside step function. The dep
dence onuN enters in~5.8! through «̄ and also through the
modified induction length

j̄ i5
«̄ ln n̄21

12 «̄
, ~5.9!

at which the radical profile given in~5.8! reaches a valuex
51/2. The accuracy of the above representation is teste
Fig. 2, where the radical profiles obtained from~5.8! for
uN5(0,60.05) are compared with numerical integrations
the original problems~2.17!–~2.19!. As can be seen, the
asymptotic description describes with excellent accuracy
shape of the heat-release distribution and its changes with
Neumann temperature.

B. The simplified evolution equation

In writing the integral evolution equation~4.2! associ-
ated with the simplified description~5.8! it is important to

realize that the main dependence ofx on uN is due to the
FIG. 7. The time evolution ofQN

5bBuN for decreasing values of the
bifurcation parameterb as obtained
from ~5.10! with k50, «50.15 and
n53.4631023.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. The time evolution ofQN5bBuN for decreasing values of the bifurcation parameterb as obtained from~5.10! with k50, «50.05 andn55.60
31029.
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exponential variation of the branching time«̄, while the
variation of lnn̄21 from its steady value lnn21 can be ne-
glected in the first approximation. Furthermore, small valu
of uN of orderbB

21 yield changes ofx of order unity, so that
it is appropriate to define a rescaled variable of order un
QN5bBuN . Introducing then~5.8! into ~4.2! produces the
evolution equation

bQN~t!5E
0

`11H~j2 j̄ i !$exp@2~j2 j̄ i !#21%

11exp@2~12 «̄ !~j2 j̄ i !/ «̄ #
dj21.

~5.10!

In the present approximation, the time-dependent functi
«̄@t2(11k)j# and j̄ i@t2(11k)j# can be written from
~5.4! and ~5.9! as

«̄5« exp$2QN@t2~11k!j#%,
~5.11!

j̄ i5
« ln n21

exp$2QN@t2~11k!j#%2«
,
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where a Frank–Kamenetskii linearization has been adop
for the exponential temperature dependence of the branc
reaction rate. The definition of«̄ given in ~5.11! yields in the
present approximationQNc

5 ln(«) for the crossover tempera
ture, which corresponds to the limiting form of~3.2! for
bB@1.

Because of the simplifications introduced, the normali
tion condition given in~2.9! is satisfied only approximately
by the steady radical profiles obtained from~5.8!, exhibiting
errors that are of order«2, i.e., *0

`xodj.11(p«)2/6. Con-
sequently,QN50 is no longer a solution to~5.10!, being
replaced in this simplified description by steady solutio
with small positive values ofQN , of order«2, an outcome to
be kept in mind. The linear stability analysis of the stea
solutions to~5.10! then readily yields

b~11k!5E
0

`S dx

dQN
D

QN50

exp~2s~11k!j!dj, ~5.12!
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a straightforward extension of~4.3!, where use must be mad
of ~5.8! and ~5.11! to evaluate the derivative ofx(j,QN).

Equations~5.10! and ~5.11! define the appropriate non
linear evolution equation2 for the chemistry considered her
Apart from the bifurcation parameterb and the acoustic pa
rameterk, only the two chemical-time ratios« andn of the
corresponding steady detonation remain in the descript
The limit of slow radical recombination serves, therefore,
link precisely the formulation of Clavin and He2,3 to a real-
istic chemistry model, removing uncertainties associa
with the model heat-release law utilized in their previo
work.

Results of integrations of~5.10! with k50 for «50.15
andn53.4631023 are exhibited in Fig. 7, while the corre
sponding results for«50.05 andn55.6031029 are given in
Fig. 8. Comparison between these results and those of Fi
and 5 clearly indicates that~5.10! provides an accurate de
scription of the detonation dynamics. Because of the
proximations introduced in deriving~5.10!, the values ofb
that characterize the transition between the different regi
differ slightly from those of the exact solution. Values ofb
associated with the neutrally stable solution of the first t
modes, obtained in the present approximation from~5.12!
with k50 in a manner analogous to the treatment of~3.1!
but simpler in that the Runge–Kutta integrations are unn
essary, are given in Table II for comparison with the resu
in Table I. Typical differences are only a few percent.

The transition to long-period oscillations for«50.05 in
Fig. 8 follows the sequence previously seen in Fig. 5. T
two modes are present in the final solution whenb falls in
the range 0.65.b.0.61. The plots corresponding tob
50.63 in Fig. 8 should be therefore compared with tho
corresponding tob50.61 in Fig. 5. As can be seen, the v
lidity of the simplified model that was derived in the lim
«̄!1 extends far from the bifurcation point. Figures 7 and
indicate that, since the asymptotic description given in~5.8!
produces exponentially small values ofx everywhere as the
crossover temperature is approached,~5.10! is even able to
describe quenching events accurately.
nt

th
d
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C. The parametric dependence of the stability
boundary

For the values of the parameters selected above,
different oscillatory modes appeared associated with the
namical behavior of overdriven detonations with cha
branching kinetics. Depending on the existing conditio
one or the other of the two modes was found to govern
initial oscillatory behavior as the solution bifurcates. Furth
more, the numerical results indicate that when the grow
rates of the two modes are both positive, the one with
smaller frequency tends to dominate the final oscillatory
lution. Since both modes may be relevant under differ
conditions, it is therefore of interest to characterize the s
bility domain of each of the two modes, expressing the
sults in terms of a limited number of chemical parameter

Making use of~5.8! and of the expressions

S d«̄

dQN
D

QN50

52«, S dj̄ i

dQN
D

QN50

52
j i

12«
,

~5.13!

to evaluate the derivative (dx/dQN)QN50 allows us to write
the quadrature appearing in~5.12! in the explicit form

TABLE II. The critical values ofb ~and the corresponding frequencies! of
the neutrally stable solution of the modes with the two lowest frequencie
obtained from Eq.~5.12! with k50.

«50.05 «50.10 «50.15

n55.6031029:
bC1 (vC1) 0.678~0.867! 1.078~0.534! 1.408~0.391!
bC2 (vC2) 0.857~6.438! 1.810~3.153! 2.842~2.053!
n51.2331024:
bC1 (vC1) 0.384~1.348! 0.681~0.889! 0.946~0.688!
bC2 (vC2) 0.247~13.20! 0.517~6.432! 0.810~4.175!
n53.4631023:
bC1 (vC1) 0.253~1.710! 0.461~1.164! 0.644~0.929!
bC2 (vC2) 0.077~20.35! 0.156~9.913! 0.237~6.435!
E
0

`S dx

dQN
D

QN50

exp~2s̄j!dj52
j i

12«Ej i

` exp~j i2j!exp~2s̄j!

11exp@2~12«!~j2j i !/«#
dj

1
1

«E0

` $11H~j2j i !@exp~j i2j!21#%j exp~2s̄j!

exp@~12«!~j2j i !/«#$11exp@2~12«!~j2j i !/«#%2
dj, ~5.14!
e.
where the effect of acoustics has been taken into accou
defining a modified complex number

s̄5~11k!s. ~5.15!

To develop the needed simplified description, we employ
limit «!1, for which the first quadrature on the right-han
side of the above equation reduces to
in

e

2j iexp~2s̄j i !E
j i

`

exp@2~j2j i !~ s̄11!#dj

52
j iexp~2s̄j i !

s̄11
, ~5.16!

if s̄« is small and gives a negligible contribution otherwis
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



a
a
o

o

et
rm

gh

s
or
in
w

pa
r

te

tio

n

-
the

alue

ion
l to
nal

e,

790 Phys. Fluids, Vol. 13, No. 3, March 2001 Sánchez et al.
On the other hand, it can be seen that the denominator
pearing in the second quadrature is exponentially large
most everywhere, remaining of order unity only for values
j2j i of order «. Introducing the integration variables5
2(12«)(j2j i)/« and neglecting small terms, of order« or
smaller, reduces this second quadrature to

j iexp~2s̄j i !E
2`

` exp@2~«s̄11!s#

~11e2s!2
ds

5j iexp~2s̄j i !
p«s̄

sin~p«s̄!
. ~5.17!

Adding now~5.16! and~5.17! and substituting the result int
~5.12! yields, at the level of approximation utilized above

b̄5exp~2s̄j i !
p«s̄

sin@p«~s̄11!#
, ~5.18!

as an implicit equation fors̄ in terms of the parametersj i , «
and

b̄5
b~11k!

j i
5

11k

~g21!bBqj i

.
11A~g11!~q11!/~8gqd!

~g21!bBq« ln~n21!
. ~5.19!

This last expression defines a modified bifurcation param
for describing the stability boundary. Since terms of the fo
«s̄ are retained in the derivation of~5.18!, the resultant
equation adequately describes in particular the hi
frequency behavior corresponding to large values ofv, of
order «21. Equation~5.18! reveals that the stability of the
steady solution depends on the two chemical time ratio«
andj i , with the effect of acoustics entering as a small c
rection to the resulting oscillation frequency. To determ
the stability domain of each of the two relevant modes,
investigate neutrally stable solutionss̄5v̄ i 5(11k)v i .
Appropriate simplified expressions for the values ofv̄ andb̄
corresponding to the two modes can be obtained from~5.18!
by considering separately the casesv̄;O(1) andv̄@1.

With v̄;O(1), taking the asymptotic limit«!1 results
in the approximate expression

b̄5exp~2 i v̄j i !v̄~v̄1 i !/~11v̄2!. ~5.20!

Solving the imaginary and real parts of this equation se
rately gives the critical value of the bifurcation paramete

b̄C1
5cos~v̄C1

j i !, ~5.21!

where the frequency of the neutrally stable solution is de
mined from the implicit equation

v̄C1
tan~v̄C1

j i !51. ~5.22!

The results depend only on the nondimensional induc
length and are shown in Fig. 9. From~5.22!, it can be easily
shown thatv̄C1

j i reaches its maximum valuev̄C1
j i5p/2 as

j i@1. Using this last result yields 2p/(vC1
j i)54(11k) for
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the minimum value ofP/j i , revealing that the period of the
resulting oscillation, although of the order of the inductio
time t i , is always larger by a significant amount.

The limiting form of ~5.18! for v̄@1 can be written in
the first approximation as

ln~ b̄!5 i ~2pn2v̄j i !1 lnS 2p«v̄

exp~p«v̄!2exp~2p«v̄!
D ,

~5.23!

an equation that can be solved to give

v̄j i52pn, b̄5
2p«v̄

exp~p«v̄!2exp~2p«v̄!
, ~5.24!

wheren51,2, . . . . Apart from the small acoustic correc
tion, the associated periods become integer fractions of
induction time according toP/j i5(11k)/n. The most un-
stable mode, that is, the one with the largest associated v
of b̄, corresponds to

v̄C2
j i52p, ~5.25!

yielding

b̄C2
5

4p2«/j i

exp~2p2«/j i !2exp~22p2«/j i !
, ~5.26!

as the critical value of the bifurcation parameter. Equat
~5.25! states that the period of this second mode is equa
the induction time of the steady detonation plus an additio
acoustic delay, that is,P/j i511k. The dependence ofb̄C2

on the ratio of the branching time to the induction tim

FIG. 9. The values ofb̄C1 , v̄C1j i , andb̄C2 as obtained from~5.21!, ~5.22!,
and ~5.26!.
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«/j i , is also exhibited in Fig. 9. This solution may be e
pected to become inaccurate at large values ofj i .

The agreement between the predictions given in~5.21!,
~5.22!, ~5.25!, and ~5.26! and those obtained by integratin
numerically~4.3! is satisfactory, with discrepancies being
order«. The results provide, therefore, a simple quantitat
description for the frequencies and stability boundaries of
two relevant modes of instability. The results indicate th
the stability boundary can be better described in terms of
modified bifurcation parameter defined in~5.19!, with over-
driven detonations withb̄.1 being always stable to plana
disturbances. Since the model chemistry employed cont
the most relevant features of general chain-branching ki
ics, it is expected that a similar stability condition holds
realistic systems.

VI. CONCLUSIONS

Branched-chain detonations for which the heat releas
dominated by recombination possess a bifurcation param
b̄ defined in~5.19!. At large values of this parameter, th
detonations are stable to pulsations, but they become
stable when this parameter is small. The time-dependent
dimensional dynamical behavior depends mainly on th
parameters,b̄, the ratio j i of the induction timet i to the
recombination timeAR

21 and the ratio« of the e-folding
branching timeW/@ABrN

o YFexp(2bB)# to AR
21 . For most

real detonations of practical interest,« is small andj i is
roughly of order unity. The ‘‘crossover’’ condition consid
ered previously,15 at which the rate of the branching step
of the same order as the rate of the recombination step,
responds to« being of order unity, and steady detonatio
cannot exist when« exceeds unity, because recombinati
rates are then too large compared with branching rates fo
chemistry to proceed. The present study is focused on s
values of «, not thoroughly explored previously, wher
branching is rapid compared with recombination, and
dependence on the new bifurcation parameterb̄ is investi-
gated for fixed values of«. It is found that ifb̄ is decreased
below a critical value of order unity, roughly independent
the values ofj i and«, then a pulsating instability sets in, th
amplitude of which increases with decreasingb̄, soon lead-
ing to failure of the detonation whenb̄ is decreased below
another critical value.

Two different types of modes of pulsation are found
exist near bifurcation for small«. One is a low-frequency
mode in which the oscillation period is somewhat larger th
the transit time through the induction region, although ty
cally of the same order. The other is a set of high-freque
modes whose periods are integer fractions of this same t
sit time. All of the modes, including the low-frequenc
mode, are rapid compared with the slow mode derived
earlier work by applying ideas of activation-energy asym
totics to one-step Arrhenius models. As the ratioj i of induc-
tion to recombination time increases, however, the period
the low-frequency mode lengthens and at least in a qua
tive sense approaches the simplified one-step Arrhenius
diction, as might be expected since in this limit heat rele
Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to A
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becomes short compared with induction, and induction
strongly temperature sensitive. The period also is lengthe
somewhat by acoustics because of the associated non
time required for a signal to return upstream to the shoc

The mode encountered first asb̄ decreases and bifurca
tion begins depends on the value of«. Since the conditions
explored are restricted mainly toj i of order unity, decreasing
« may be viewed as decreasing the ratio of the branchin
recombination time or as decreasing the ratio«/j i of branch-
ing to induction time. For values of this branching to reco
bination or induction time ratio larger than about 0.1, t
low-frequency mode bifurcates first and dominates the

namics for all values ofb̄. For smaller values than this, how
ever, values which are of physical relevance in many che
cal systems, it is a high-frequency mode that first bifurca
and the dynamics in the vicinity of the bifurcation is dom

nated by the high-frequency mode. Asb̄ is decreased furthe
and the nonlinearity of the oscillations increases, the lo
frequency mode bifurcates and begins to dominate the
namics, being affected by the high-frequency mode only
early times. There is a narrow intermediate range of val

of b̄ in which influences of both modes clearly persist for

time. At small values ofb̄ where detonation failure is ap
proached, the low-frequency mode becomes highly domin
and highly nonlinear. It was not possible numerically to a
certain whether period doubling or chaos set in prior to fa
ure. If this does occur, then it does so over a very small ra

of b̄. It is possible that these phenomena do not exist at
small values of« addressed here; they were identifie
previously15 only for relatively large values of«. If « were
to be decreased further, below the lowest value, 0.05,
which calculations were performed here, the extent of do
nation by high-frequency phenomena would increase,
importance of additional high-frequency modes possi
could emerge. This range of very small« and «/j i is of
physical interest and deserves investigation in the future

The physical meaning of the bifurcation parameterb̄ in
~5.19! needs discussion here, beyond that giv
previously2–4 for the related generic parameterb which does
not pertain specifically to branched-chain kinetics. A numb

of different influences occur inb̄. One is the factor (g
21); the more the specific-heat ratio differs from unity, t
greater is the tendency towards instability. The pres
theory incorporates acoustic effects as a perturbation to
dynamics of overdriven detonations. As previous
explained,3 decreasing values of the overdrive parameted
~increasing values ofk) promote stability, that is, acoustic
are stabilizing. IncreasingbB , the branching activation en
ergy referred to the thermal enthalpy at the Neumann st
increases the tendency towards instability, as does increa
q, the heat release referred to this same enthalpy. The p
uct of (g21) with these two quantities, (11k)21 and the
ratio j i of induction time to recombination time is the pa

rameterb̄21 that mainly controls the stability behavior fo
branched-chain chemistry. Thus, for example, increasing
induction time promotes instability, while increasing the r
combination time tends to suppress it. The effects of aco
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tics, heat release, temperature sensitivity of branching,
duction period and recombination rate thus all are folded i
this single bifurcation parameter. Especially for sh
branching times, which is the situation generally encounte
in detonations with branched-chain chemistry, all of the
phenomena play roles in the one-dimensional stability
dynamics, striking a delicate balance in which the variat
of any one of them, with the others held fixed, affects
detonation behavior. It is satisfying to have identified ju
one parameter that captures all of these effects.
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