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The dynamics of time-dependent, planar propagation of gaseous detonations is addressed on the
basis of a three-step chemistry model that describes branched-chain processes. Relevant
nondimensional parameters are the ratio of the heat release to the thermal enthalpy at the Neumann
state, the nondimensional activation energies for the initiation and branching steps, the ratio of the
branching time to the initiation time and the ratio of the branching time to the recombination time.
The limit of strong overdrive is considered, in which pressure remains constant downstream from
the leading shock in the first approximation, and the ratio of specific heédsaken to be near

unity. A two-term expansion in the strong overdrive factor is introduced, and an integral equation

is derived describing the nonlinear dynamics and exhibiting a bifurcation parameter, the reciprocal
of the product of ¢—1), the nondimensional heat release and the nondimensional branching
activation energy, with an acoustic correction. A stability analysis shows that, depending on values
of the parameters, either the mode of lowest frequency or a mode of higher frequency may be most
unstable. Numerical integrations exhibit different conditions under which oscillations die,
low-frequency oscillations prevail, high-frequency oscillations prevail, highly nonlinear oscillations
persist, or detonation failure occurs. This type of parametric analysis is feasible because of the
relative simplicity of the model, which still is more realistic than a one-step, Arrhenius chemical
approximation. In particular, by addressing the limit of slow radical recombination compared with
branching, explicit results are derived for the critical value of the bifurcation parameter, involving
the ratio of the recombination time to the induction time. The results help to clarify the general
nature of one-dimensional detonation instability and provide simplifications that can be employed in
efficiently relating gaseous detonation behavior to the true underlying chemistry200@
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NOMENCLATURE P
A Frequency factor Q
b Bifurcation parameter defined i2.23
b. Critical value ofb at the Hopf bifurcation q
be,. be, Values ofb, for the two most unstable modes R
b Modified bifurcation parameter defined (6.19 i
bcl, bCz Critical values ofb for the two most unstable tAC
modes '
Cp Specific heat at constant pressure u
d Overdrive parameter "
E Activation energy
F Reactant W
f Normalized reactant mass fraction X
k Reaction-rate constant Xo
M Third body .
[M] Third-body concentration Y,
y
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Nondimensional period of the oscillations
Amount of heat released per unit mass of radicals
consumed

Nondimensional heat release

Universal gas constant

Temperature

Crossover temperature

Induction time, given in2.15 for the hydrogen—
oxygen system

Nondimensional gas velocity

Gas velocity relative to the shock of the steady
detonation

Molecular weight

Radical

Oxygen mole fraction

Normalized radical mass fraction

Initial reactant mass fraction

Geometrical coordinate

Location of the leading shock

© 2001 American Institute of Physics

Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 3, March 2001 Branched-chain one-dimensional overdriven detonations 77
Greek Symbols 3 Nondimensional mass-weighted coordinate de-
@ Exponential growth rate of the temperature pertur- fined in(2.2) .
bation i Induction length defined i2.14)
B Nondimensional activation energy & Instantaneous value of the induction length de-
y Ratio of specific heats fined in (5.9)
Oy Reduced temperature increment at the Neuman® Density
spike Bg Oy o Complex exponential rate of the temperature per-
Oy Reduced crossover temperature defineig) turbation
0 Nondimensional temperature increment o Acoustically modified exponential rate ¢1x) o
e Ratio of the branching time to the recombination 7 Nondimensional time defined i{2.1) .
time evaluated at the Neumann spike of the steady”. Frequency of the temperature perturbation
detonation 1) Modified frequency (¥ x) w
e Instantaneous value of the ratio of the branching .
time to the recombination time at the Neumann SUPSscripts
spike B Branching reaction
K Acoustic parameter defined @#.1) I Initiation reaction
v Ratio of the branching time to the initiation time N Properties at the Neumann spike
evaluated at the Neumann spike of the steadyR Recombination reaction
detonation % Properties far downstream from the leading shock
v Instantaneous value of the ratio of the branching )
time to the initiation time evaluated at the Neu- SUPerscripts
mann spike o] Properties of the steady detonation
I. INTRODUCTION whatever, but the extent to which that instability affects the

final cellular structure is unclear. While most investigators
Steady, planar detonation structure, first explained indeprobably would agree that branched-chain kinetics of the
pendently by Zeldovich, von Neumann, andrdg (ZND),  type addressed here are significant in cellular detonation
involves a strong leading shock wave that heats the chemitrycture, the specific role of this chemistry has not been
cally reactive material and thereby causes exothermic chemgqarified.
cal heat release to _begin. The. chemistry then proceeds in_ the Ag a first stage in improving understanding of the influ-
high-speed subsonic flow behind the shock through chemic@lnce of this chemistry on cellular detonations, the present

mechanisms that are gradually being understood better 'Baper addresses the corresponding one-dimensional, time-

recent years. The present paper addresses influences on dej@nangent dynamics of unsteady, planar detonations. The
nation structure and dynamics of a model chemical mech planar problem is intrinsically simpler and yet sufficiently

nism that has been found to provide a very good descriptio omplex that much remains to be learned about it. In addi-

of the chemistry that occurs in most gaseous detonations. . . . .
. e . . ._Tion, one-dimensional, pulsating detonations, known as gal-
This description pertains to branched-chain chemica| . . .
oping detonations, have been observed experimentally.

kinetics: These generally occur for detonations under narrow confine-
The ZND detonation structure is now known to be un- 9 y

stable. Various instabilites in the inviscid flow associatedment' where boundaries suppress the multidimensional, cel-

with the chemical heat release generate disturbances that a_{'d{ar behavior. The presence of the_ boundaries thus <_:Iear|y
back on the leading shock and cause the propagation to Bgﬂuences galloping detonations. Since such boundaries are

unsteady and nonplanar. Much recent research has been di&t Present in the mathematical model addressed here, quan-
voted to trying to clarify further the nature of these instabili- titative agreement of predictions with experiments on gallop-
ties (e.g., Refs. 2-% In very strongly overdriven detona- N9 detonations is not expected. Although there could be for-
tions, where the chemical heat release is sufficiently smalfiuitous agreement, the extent of agreement that should be
compared with the thermal enthalpy behind the |eadin9anticipated currently is entirely unknown. The purpose of the
shock, ZND detonations in ideal gases must be stable bdresent paper is not to develop a theory that is well justified
cause the corresponding shock wave is stable, but this situfor comparison with experiment on galloping detonations but
tion is not usually encountered experimentally. Most realrather to determine the influences of the branched-chain
detonations are cellular, that is, they exhibit time-dependenghemistry on the one-dimensional, time-dependent context.
multidimensional structures that involve interactions of dif-In this sense, the present work concerns a model problem
ferent shock waves under the influence of chemical heat redesigned to further advance our general understanding of the
lease. There is interest in clarifying structures of cellulardynamics of gaseous detonations. In would be of interest in
detonations. How the chemistry controls these structures iiture work to study the extent to which the results can be
not well understood. It is knovfrthat ZND detonations are compared with experiments on galloping detonations.
multidimensionally unstable to any exothermic chemistry = Most studies of planar detonation dynamics adopt one-
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step chemistry approximations. Since chemistry affects detdd. PROBLEM FORMULATION
nation dynamics only by the sensible heat release that it prog_ Chemistry model

duces through energy conservation, the only relevant
difference between one-step and multistep chemistry is the
number of first-order differential equations that need to be'
addressed to describe the chemical heat release. There are, |

for example, one-step approximations that can be anticipated F—X,

to model branched-chain chemistry wetnd simpler mod-  the branching reaction
els with similar attributes have been employed receftly.
Most of the research exercising one-step chemistry, however,
selects an exothermic Arrhenius process, usually of first or-
der with respect to fuel, which does a poor job of capturingand the recombination reaction,
the separate initiation, branching and recombination steps of R

chain chemistry. There is, in addition, the possibility of more  X— Products,

I i ising f he | f differ- .
complex dynamics arising from the larger number of differ here F and X represent the reactant and radical of the

ential equations required for describing more complicate . o : .

. . : S : _ Chemistry description. The reaction-rate constants of the first
chemlstry. For this reason, |.nve.st|gat|0ns .of detonations W|tl?WO reactions depend on the temperatiieaccording tok,
multistep model chemical kinetics are of interest. =Aexg —E /(RT)] and kg =Agexq —Eg/(RT)], whereR is

The present paper addresses detonation dynamics withige yniversal gas constam; andAg are frequency factors
model for branched-chain chemistry motivated by considerand E, and Eg are activation energies. The values of these
ations of real chemistry, such as that of the hydrogen-two last quantities are such that the nondimensional activa-
oxygen system. The model is an extension of two-step chairtion energiesg,=E,/(RTy) and Bg=Eg/(RTy) evaluated
branching models often treated previoudlythe extension at the temperature of the steady detonation immediately
being obtained by adding an initiation step to the branchinglownstream of the shock wavey are much larger than
and recombination steps. While the initiation step is unnecunity, thereby causing the rates of initiation and recombina-
essary when chain carriers are initially present or in flameslion to be very sensitive to small temperature variations. In
where they arrive by diffusion, in detonations initiation is tYPical chain-branching systems radical recombination in-
essential for the chemistry to begin. Although models incIud-VOIVe§ three-body collisions with zero activation energy. The
ing initiation are well knowri®only two previous detona- resulting temperature dependence of the associated rate con-

. . . . stant is very weak and is, therefore, neglected in the present
tion studies appear to have addressed this type of kmetlS ant is very weak and is, therefore, neglected © prese

hemd#15 Ond4 4 multidi ional stabili hi aevelopment, where we assume the rate constant of the re-
scheme: ™ One™ treated multidimensional stability, while o, pination reactionkg=Ag, to be independent of tem-

the othel® is the previous investigation that is most closely perature. Most of the heat is generated through radical re-
related to the present study, from the viewpoint of the probyompination, with Q denoting here the amount of heat
lems addressed and the chemistry employed. The readggleased per unit mass of radicals consumed in that step. The
therefore is referred to Short and Quitior further back- initiation step typically is endothermic and branching slightly
ground information. exothermic, but their resulting enthalpy changes are of lesser
The present study differs from that of Short and Qtirk importance and are considered here to be negligible. In the
in a number of ways. For example, the approximation isapproximation employed, therefore, the energetics is the
introduced here that the ratio of specific heats is near dfity, Same as that considered previously.
and the problem is formulated in terms of an integral equa-
tion that depends on the distribution of the heat-release ratg,
thereby extending an earlier development of this fypme To study the propagation of one-dimensional overdriven
include more detailed chemistry. These simplifications withdetonations with this chemistry, first lgtdenote the coordi-
respect to the previous worklead to the occurrence of nate in a laboratory frame of reference, witl{t) represent-
fewer nondimensional parameters whose values need to #agd the instantaneous location of the leading shock wave. In
specified in parametric investigations and permit more com@rder to parallel the simplified description given in Ref. 2,

plete analytical developments, rather than necessitating full e consider _the limit ¢— 1.)<1' with Y de_notlng here the
. . . . fatio of specific heats. This assumption is reasonably well
numerical generation of results. Certain conclusions also dif:

fer. For examole. it is found here that the most unstabl ustified in fuel—air detonations, for which the elevated tem-
' Pie, Jperatures found downstream from the leading shock wave

mode is not always the one of lowest frequency; the analyt'bause the specific heats to increase significantly, giving

cal simplifications facilitate such discoveries. Analytical ap-_1 2 in typical applications. In this limit of almost equal
proximations are developed here that ultimately enable critispecific heats, the changes in temperature caused by pressure
cal bifurcation values and frequencies to be obtained entirelyariations are negligible in the first approximatidAlso, in

in closed form with reasonable accuracy for realistic chemview of the large temperature sensitivity of the induction
istry. kinetics, which will be shown below to be mainly related to

As in previous workl®> we consider the initiation reac-

F+X—2X

. Conservation equations
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the large value oB3g, only relatively small variations of the of  of f
detonation propagation velocity from its steady value are -+ GE Stvexdpo/(1+6)]
considered. Furthermore, attention is restricted to overdriven

detonations with large values of the overdrive paramdter +exd Bgb/(1+ 6)]x}, (2.9
defined as the square of the ratio of the detonation propaga-
tion velocity to the velocity of the corresponding Chapman— 5_0 + 0_6 - 2

. ax, (2.9
Jouguet detonation. ar = 9¢

As explained in previous publicatios,the solution in
this caseg(strongly overdriven detonations with almost equal
specific heats and large temperature sensitivity of the induc- du 6 d6
tion kineticy can be found by considering the distinguished ~ 9¢ 97 9E

limit Bg~ (y— 1) t=d>1. At leading order, it is found that ) .
dp the formulation,x and f denote, respectively, the mass

the spatial and temporal pressure variations downstrea . i . o
from the leading shock wave are negligible. IncorporatingfraCt'O”S of the radical and the reactant scaled with the initial

; . oy o
these simplifying assumptions reduces the leading-ordgie@ctant mass fractiorie. The variable=(T—Ty)/Ty
problem to that of integrating the species and energy consef'€asures temperature changes with respect to the tempera-

vation equations, while mass conservation provides an intd!r® @t the Neumann spike of the steady detonatidfp,

gral constraint on the solutignAcoustics enters in the solu- Mass consoervauon is expressed in terms of the scaled veloc-
ton as a first-order correction in the asymptotic!ty U=v/vy, wherev is the gas velocity relative to the
development,resulting in a modified integral constraint with SnOCk of the steady detonation. The heat of reacQoper
corrections of orded™ Y2 to the critical conditions for the Unit mass of fuel consumed is nondimensionalized to yield

onset of instability and to the periods of the resulting oscil-q:(QYF)/(CpTcr\’l)v a parameter of order unity in overdriven
lations. In what follows, we develop first the Ieading-orderdeto”at'ong-The particular qhemlstry addressed here enters
solution corresponding to the branched-chain kinetics cont® poroblem through four different parameters evaluated at
sidered here. The extension of the formulation to account fofl = 1n» namely, the two nondimensional activation energies
acoustic effects is presented later in Sec. IV. B1=E|/(RT}) andBg=E/(RTY), the ratio of the branch-
To describe the solution, it is convenient to scale thd"d time to the recombination times=Ag/[Agp}Yr
time t with the constant recombination tinfe; > according < &XP(~Bg)/W] and the ratio of the branching time to the
to initiation time v=[A,exp(—B)/[AspyYr eXp(—Bg)/W]. In
the branching step, the temperature dependence of the addi-
tional density factor has been included g to avoid a
clumsy and irrelevant factor of (£ 6) in the denominator.
Equations(2.3—(2.6) must be integrated with appropri-
A dimensionless mass-weighted coordinate ate initial and boundary conditions. In the stability study pre-
sented below, the initial profiles considered will be those of
A y the steady detonation. On the other hand, at the Neumann
&= OROJ p(y’ t)dy’ (2.20  spike (¢=0) the condition of inert flow across the shock
PNUNY Vst wave yieldsx=0 andf=1, while the corresponding values
of the temperature and velocity= 6y(7) and u=uy(7),
is then introduced, wherg®, andv?, are the steady values at are functions of time related to the instantaneous propagation
the Neumann spik¢immediately behind the shoglof the  Vvelocity of the leading shock through the Rankine—Hugoniot
density and gas velocity relative to the shock. The same nd€lationships. Since only small perturbations of the propaga-
tation will be employed throughout the following develop- tion velocity are considered, these relationships can be lin-
ment: The superscripo will represent properties of the earized to provide the equation
steady detonation, while the subscriyptwill denote the val- Oy
ues of the flow variables at the Neumann spike. uy=1-
For simplicity, an equal molecular weighty, is as-
sumed for all chemical species and a constant value of thgo close the problem, a radiation condition must in general
specific heat at constant presswg, is employed. Changes be imposed far downstream from the shock. In strongly over-
in mean molecular weight and specific heat across the deteiriven detonations, in which the pressure perturbations are
nation can be expected to introduce relatively small quantinegligible, this radiation condition implies that the flow ve-
tative corrections in the results, but the essential physics ifcity must approach its steady value=u? as¢— .2
captured with the simplifications introduced here, which al-  To find this value, and also the equilibrium temperature
low the species and energy equations to be writtén as of the steady detonation, linear combinations@3)—(2.6)
can be integrated wit/97=0, and with 63=0 and uy

while the continuity equation can be written in the form

(2.6

7=Agt. (2.2

T 2.7

Ix  ox f =1, to give#°=q[1—(x°+f°] andu®=1+ 6°. As can be
ot o= g lvexdBol(1+6)] seen, when chemical equilibriunx{=0 and f°=0) is ap-
T 0& e . . .
proached far downstream, the nondimensional flow velocity
+exd Beb/(1+ 6)]x} —x, (2.3 and temperature of the steady detonation reach the values
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3

uz=1+q, (2.9 10 : . . .

and 62 =q, respectively. This last result shows by integrat-

ing the steady form of2.5) over the entire region down- li(us)
stream from the shock that the radical profile of the steady
detonation satisfies 10" |

“xedé=1. 2.9
J

0

C. Chemical-kinetic parameters

Realistic values for the four chemical-kinetic parameters
(Bg, Bi, &, andv) in general can be estimated for different
chemical systems from their corresponding rate-limiting .
steps. For instance,linzHOZ combustion, these r:;\te—limiting 1% 000 1100 1200 1300 1400 1500

steps are kH0,—20H (initiation), H+0,—OH+O T2 (K)
3

(branching and H"'OZH\_A_’HOZ_H_VI (recomb'n_at'om ~ FIG. 1. The comparison of the induction timiemeasured in the shock-tube
where M represents a third body, its concentration bein@xperiments of Bhaskaraet al. (Ref. 18 (squareswith the prediction of
[M]. Values of the associated reaction-rate constants can 215 with p=2.5 atm andXo,=0.148(solid line).

found in Ref. 17, for instance, yielding

Bi=24131T3, Bg=8620My, (210 whereXo, represents the initial Omole fraction and: andv
_ _ 0y 1.7 o can be evaluated frorf2.11) and(2.12), respectively.
o =ka[M1/kp=23.4(TR) " exp(8620MY), (2.1 A great deal of shock-tube data exists on ignition times
and of hydrogen—oxygen systems. More than a dozen papers on
40107 o this topic can be identified in the literature. Such experiments
v=K;/kp=4.83<107%(Ty)"'exp( —15511Ty), (2.12  jrdeed are measurements on very highly overdriven steady,

with the temperatur@? and post-shock pressupeexpressed planar detonations in the present terminology, and therefore,
in K and bar, respectively. it is possible to compare the predictions(@f15 with these

The temperature dependence of the initiation ancEXPerimental results. As an example, we compare in Fig. 1
branching chemistry is seen from these values to be fairjh® induction times observed in the shock-tube experiments
strong, i.e., the conditiong,>1 andBg>1 are in general of Bhaskaranet al.*® with those qbtamed fron{2.;5) for
satisfied. It also can be seen that initiation reactions are vergifferent values offy. In the experiments, the leading shock
slow, so that the inequalities<1 andv<e always hold for ~ elevated the pressure of a stoichiometric mixture of hydro-
temperatures of practical interest. As a result, the initial radigen and oxygen diluted with 55.6%,NX,=0.148) to a
cal growth is very slow, and only negligibly small radical fixed valuep= 2.5 atm. As can be seen, the agreement is
concentrations occur behind the shock throughout most ofeasonably good for the range of temperatures explored, with
the so-called induction region. To estimate the length of thiglepartures being somewhat more significant as the tempera-
region, &, one can integrate the steady-state form2B)  ture decreases. Although Fig. 1 clearly indicates that the

with f=1 and#=0 to obtain the steady radical profile model chemistry used in this paper is relevant for hydrogen—

oxygen systems, more careful comparisons with a larger

X0= v [exd (1—s)&ls]—1], (2.13 number of experimental contributions would be necessary to
l-¢ evaluate the accuracy ¢2.15 thoroughly. These compari-

sons are beyond the scope of the present work but are a
8uitable topic for future research.
For a given pressure the conditien=1 determines the
so-called crossover temperatufie, (for example,T,=1500
en(v™Y) K at p=40 atm, that defines the second explosion limit of
gi:?' (2.14 H,—O, mixtures!® Equation(2.14) indicates that the induc-
tion length becomes infinite as the crossover temperature is
which is a function of the two chemical-time ratiesandv.  approached. The chain-branching explosion is then replaced
This nonqimensio_nal ind_ucti(_)n length can also_ be .inter.prete@y a solution with small radical mass fractions, of order
as tlhe ratio of an induction timg to the recomblnatlgn time  since y<1, the time required to release an appreciable
Ag". For the hydrogen—oxygen system, the predicted igniamount of heat in this regime of slow combustion becomes
tion time becomes extremely large. Although the presence of the initiation step
2.33x 10" 15(T9) L Texp(86202) In(»~ 1) in the chemical model ensures th_at all of the heat is eve_ntg—
= s, (2.15 ally released regardless of the initial temperature, for realistic
values ofv the detonation thickness fdiy below crossover

which is approximately valid in the induction region. This
equation reveals that radical mass fractions of order unity ar
reached only after an induction length

‘ PXo, 1-¢
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' ' ' ' ' ' =5.60<10"°, Bg=10, B,=10 and q=0.3, with the
chemical-time ratios chosen in this case such tlat
=g lnv Y(1—e)=1. The induction, relatively rapid fuel
consumption and slower radical recombination are evident in
this figure.

D. Integral evolution equation

As explained in Ref. 2, the hyperbolic nature (@f3)—
(2.5 enables integration to be performed along the trajecto-
ries 7— ¢= constant. The composition and temperature of a
given fluid particle thus can be obtained by solvi2gl7)—
(2.19 with initial conditions até=0 given byx=0, f=1,
and 6= 6y(7— &). The integration provides in particular the

00 05 10 15 20 25 30 35 40 radical mass fraction of the fluid particle locatedétt a
& given instantr
FIG. 2. The solid lines represent the steady profi&sf® and 6° obtained X=X[£,O0n(T=&)], (2.20

by integration of(2.19—(2.19 with £¢=0.05, v=5.60x 10" °, Bz=10, 3, . .
=10 andq=0.3, and the corresponding modified radical profiles obtained@S @ function of the Neumann_tempe.ratlm( T &) previ-
for 6y==+0.05, while the dashed lines represent the approximate radicabusly encountered by the fluid particle as it crossed the
profiles obtained from Eq5.9). shock.
On the other hand, use of the expression for the heat-

) L . . release rate appearing i2.5), enables the integration of
is much too large to be significant. Therefore, in cha|n-(2_6) to be performed to give

branching systems of practical interest, e.g., hydrogen—
oxygen mixtures, detonations can only develop for values of o
T above crossover, that is, values ofsmaller than unity. ug—uN=qf xdé. (2.2
The ratioT./T§ was considered in previous wdrkio be a 0

bifurcation parameter that was varied numerically to exhibitcompining now(2.7), (2.9), (2.20 and (2.21) finally gives
different types of solutions. Because of the exponential dege integral equation

pendence of the branching rate on temperature, the value of

¢ becomes small as the Neumann temperature increases a 1
small relative amount of ordgBz* from crossover, so that On(T)= Bab
small values ot are found under most conditions, including B

in particular those of strong overdrives. In view of thesewhich controls the evolution ofy(7), thereby determining
considerations, we investigate in the following developmengpe dynamical behavior of the detonation. Following the

| xte.oue-onae-1), (222

the chemical-kinetic parameters in the ranges analysis of Clavin and Héthe bifurcation parameter
BB~B|>1’ V«S«l, (21@ 1
as they apply to the description of overdriven detonations b=-———— (2.23

with chain-branching kinetics. (y=1)Bed

The detonation structure that arises in this limit is exhib'has been introduced in Wr|t|n@22 Because the heat re-
ited in Fig. 2, where the temperature a:)nd speg:ies profiles gkase occurs through recombination, the radical profile enters
”;e steadily propagating detonatio’(¢), x°(£), and in the problem as an appropriately normalized heat-release
f°(¢), are plotted; dashed curves and thosete# 0 in Fig.  distribution. In view of(2.9), it is clear that steady detona-

2 are to be discussed later. These profiles are obtained Qyyns, those havingdy(7)=0 and x(£,0)=x°(¢), arise as

numerical integration of the equations one of the possible solutions (8.22). It is shown below that
dx f such steady solutions are stable only for values of the bifur-
d_g = g{v exd B,0/(1+ 6)]+exd Beb/(1+ 6)]x}—X, cation parametel above a critical value, at which the solu-

(2.17 tion undergoes a Hopf bifurcation. Theof (2.23 is evi-
' dently different fromT. /Ty, the crossover temperature ratio

df f previously® termed a bifurcation parameter, but it bears
dé E{Vexr['g' 0I(1+ 0)]+exd B0l (1+6) ]x], some relationship to it, as will be seen. Equati@r22 also
A indicates that in the absence of chemical reaction the normal-
(2.1 indi hat in the ab f chemical reaction th |
do ized constant temperature associated with the remaining
d_gqu’ (2.19 piston-supported shock wave is
N _ _ i ; 1
with x=0=0 andf=1 at{=0, the steady-state version of Oy=— —— (2.24

(2.39—(2.5. The parametric values selected are 0.05, v
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This value is clearly associated in particular with the solutionlength equal to 100 used near quenching. A uniformly dis-

that arises when detonation quenching takes place. tributed grid of up to 32 000 points was used to discretize the
Figure 2 shows effects of the variations of the leadingflow field. This uniform grid was distributed along the posi-

shock on the shape of the heat-release distribut{ahdy] tive 7 and ¢ axes, while the adaptive Runge—Kutta scheme

that appears in the integral equation. In particular, radicamarched along the characteristics in integratif®yl7)—

profiles corresponding téy= +0.05 are plotted along with (2.19.

the steady distributior®( &) =x[ £, 6y=0]. As anticipated in

the development leading t®.22, small variations of the A. The Hopf bifurcation

shock propagation velocity, i.e., values @§<1, are ampli-

fied through the chemistry to give much larger changes in th%ati

heat-release distribution. For the particular valuegptised nation remains stable, i.e., the steady solutige- 0 is even-

in the plot, the profilex] £, 6 =0] undergoes both a transla-_ tually recovered after a transition stage in which the initial

t'ﬁn of %rdler utr;]ltyt ?r:].d Ia non;negllg|b:e changgt_of_tshape. !t ; erturbation exponentially decays to zero. On the other hand,
shown below that this farge temperature Sensitivity IS mainly, s, i gecreased below, the initial perturbation is seen to

associated with the large activation energy of the branchin%row, leading to an oscillatory solution of finite amplitude.

The computations revealed that for values of the bifur-
on parametel above a critical valué; the steady deto-

step.fe To characterize the solution at the onset of the instability, a
linear stability analysis of the steady solution was performed.

IIl. STABILITY AND NONLINEAR DYNAMICS OF THE Introducing into (2.22 infinitesimally small values of the

SOLUTION temperature perturbatiomy, with an exponential time de-

. L . _ pendence of the fornd<exp(or) leads to
There are numerous physical situations in which stable

solutions become unstable when a parameter passes through
a critical value, beyond which time-dependent behavior oc- _ fxi
curs. The laminar boundary layer is a classical example that ~ /o Bg
exhibits instability above a critical Reynolds number. A cor-
responding bifurcation parameter for the present detonations
is the temperature-sensitivity parameker®. Investigations as an implicit equation for= a + wi. To compute the above
of departures from stable behavior can be made by solvingitegral, systent2.17)—(2.19 was differentiated with respect
the governing equations numerically for different values of t0 6y, providing three new ordinary differential equations
with different initial conditions. Stabilities of steady solu- for the functionsdx/d 6y, df/d6y, andd6/d 6y . Integrating
tions also can be investigated analytically by introducingthen the resulting system of six differential equations with
small perturbations. Both of these approaches are pursudgitial conditions x=f—1=6=dx/doy=df/doy=do/doy
here to ascertain how the behavior of the system varies withr 1=0, as corresponds téy=0, provides in particular the
b. Appropriate mathematical methods vary, involving alge-function (dx/déy)y, o required to solve(3.1). A two-
braic equations, differential equations or integral equationsgdimensional Newton iteration in the complex numlbewas
depending on the problem. Integral equations are involved ithen performed to identify the values for which solutions
the present problem. exist; the convergence criterion adopted typically was one
To investigate the behavior of the solution as the bifur-part in 104, and no convergence difficulties were encoun-
cation parametes is decreased, numerical integrations of thetered. Equatior{3.1) applies only for unstable, neutral and
nonlinear evolution equatio(2.22 were carried out. In the relatively weakly stable modes because the integral diverges
computations, the value8g=B,=10 andq=0.3 were se- for «<—1, an uninteresting range that was not investigated.
lected for the nondimensional activation energies and heat of The growth ratex and the frequencyw corresponding to
reaction, respectively. Results including two differentthe two modes with larger growth rate are shown in Fig. 3
branching timesg =0.15 ands = 0.05, were computed, with for the sets of chemical-kinetic parameters studied here, and
the associated values for the initiation time=3.46x10" %  for decreasing values of the bifurcation paraméteAs pre-
and v=5.60x 10" ? selected to give the nondimensional in- viously anticipated, a Hopf bifurcation takes place s
duction length;=1, that is, the induction timé equal to  decreased below a critical value. The frequency values, and
the recombination time. Variations ef and » about these the corresponding values bfof the neutrally stable solution
values also were investigated. Integration along the chara®f the modes with the two lowest frequencies are given in
teristics (2.17—(2.19 was performed with a fourth-order Table I. In Fig 3 a different mode is seen to be associated
Runge—Kutta scheme with adaptive step size, and aith the instability of the steady solution for the two differ-
Newton—Cotes method was employed for the quadrature agnt sets of conditions. Thus, for conditions sufficiently far
pearing in(2.22. To facilitate the potential development of above crossover, as it is the case-0.05, the mode of
instabilities, an initial perturbation intentionally was intro- higher frequency dominates as the steady solution becomes
duced externally by employing a low-accuracy schemeunstable, while for larger values of the reduced branching
(second-order Runge—Kujtan the computation of the start- time ¢ the Hopf bifurcation occurs first at the lower fre-
ing steady profiles. For each calculation, the extension of thquency. In comparison, for the particular conditions ad-
computational domain was varied to accommodate the maxidressed by Short and QuitR the Hopf bifurcation encoun-
mum induction length observed, with a maximum inductiontered was of the low-frequency type, with the other mode

(ﬂ) exp(— oé)dé, (3.0
doy/, _

Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 3, March 2001

Branched-chain one-dimensional overdriven detonations 783

1.0 T T — TABLE I. The critical values ofb (and the corresponding frequengies
o the neutrally stable solution of the modes with the two lowest frequencies as
05 F % e 1 obtained from Eq(3.1).
D
v a
oLoo % = £=0.05 £=0.10 £=0.15
— —9.
-05F ¢=0.05 ] vr=5.60X10"":
ber (wc1) 0.667(0.864 1.031(0.523 1.276(0.379
-1.0 L : ' bes (wco) 0.873(6.478 1.855(3.183 2.904(2.079
10 ‘ . . v=1.23x10"%
’ ber (wci) 0.374(1.346  0.646(0.877  0.861(0.660
05 b ] bes (wc2) 0.268(13.36 0.593(6.579 0.969(4.308
k3 v=3.46xX 103
QL 00 kA 2 ber (wea) 0.245(1.719  0.435(1.155  0.593(0.897
o bes (wcy) 0.090(20.64  0.205(10.22  0.343(6.735
o
—05F  e=0.15 o ]
-1.0 ' '
0 2 4 6 8

FIG. 3. The values oix and w of the two modes of smaller frequency
for &=1.0, Bg=B=10 and q=0.3 as obtained from(3.1) with
£=0.05 (=0.90,0.75,0.65,0.50,0.40,0.36) and  withe=0.15
(b=0.65,0.55,0.45,0.37,0.31).

fect to be always negligible for all the cases shown. Bor
<bcl=0.593 the initial perturbation grows in time to give a
long-period oscillatory solution, as can be observed for in-
stance in the cask=0.55. Qualitatively similar results are
obtained a® is initially decreased fronbc , with the result-

ing oscillations showing increasing amplitudes. The associ-

only appearing marginally as a decaying perturbation of theyteq periods increase from the valRe=27/w=7.00 pre-

different solutions computed.

B. The development of the oscillatory instability

The time evolution of the solutions correspondingsto

dicted by the linear stability analysis bt=bc . The linear
stability analysis is not able to predict the increase in period
away from the bifurcation point accurately. For instance, for
b=0.55 andb=0.45 the corresponding periods of oscilla-

=0.15 ande=0.05 is exhibited in Figs. 4 and 5, respec- tions areP=7.34 andP=9.38, while the linear stability
tively. To allow comparisons with subsequent analytical re-analysis yieldsP=7.15 andP=7.67. In the solution that

sults, the reduced variabl® y= Bg6y is employed in the

emerges, the Neumann temperature, which is directly related

plots, a selection thdB.1) indicates is appropriate. The dis- to the propagation velocity of the leading shock wave, is
cussion here addresses only the upper curves in these figuragen to remain below that of the steady solution most of the
the lower curves being considered in the following subsectime, exhibiting large overshoots of relatively short length.

tion.

Qualitatively similar oscillations are found in previous nu-

As can be seen from Fig. 4, the growth rate of the secondherical studie$:*®

mode in the case =0.15 is sufficiently negative for its ef-

0.0004

In the casee=0.05 exhibited in Fig. 5, both of the

0.0002 b=065
0.0000 \/\/\/\/
-0.0002
10 20 30 40 50 60 70 80 90 100
2 . 8
1 b=0.55

FIG. 4. The time evolution o® = Bg6) for decreas-
ing values of the bifurcation parametbras obtained
from (2.22 with £=0.15, »=3.46x10"%, Bg=10,

-

0 B,=10, andq=0.3.
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0.004
0.002 |~
0.000
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0.0
-0.1
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011 h=0.65
0.0
-0.1
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021 h=0.61
0.0
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®N . [b=061
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0 10 20 30 40 50 60 70 80 90 100
25
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5
I
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FIG. 5. The time evolution o y=Bg6y for decreasing values of the bifurcation paramdieas obtained from(2.22 with £=0.05, »=5.60x 10 °,
Bs=10, B,=10 andq=0.3.

modes identified above can be observed in the decaying traralues of b below b =0.667. The resulting behavior
sient solution corresponding to>bc,=0.873. Forbin the  changes ab reaches a valub=0.64, for which the ampli-
range 0.873-b>0.667 the linear stability analysis predicts tude of the long-period oscillations is seen to increase with
that the first mode remains stable, while the second modéme. The resulting time evolution is seen in the two plots
does not. This is illustrated fdr=0.75, a case for which the corresponding tdo=0.61. Although the oscillations corre-
long-period oscillation associated with the first mode is seesponding to the second mode appear earlier because of their
to decay, while the second mode grows exponentially to fiassociated larger growth rate, the long-period oscillations
nally give an oscillatory solution of periol=0.97. Similar  also develop, so that both modes are eventually present in the
results are obtained &s>bc_ is further decreased frofc;  resulting solution for long times. This behavior is seen in all
the resulting oscillations have increasing amplitudessolutions forb in the range 0.64b>0.59. As the bifurca-
whereas the period remains practically invariant, and irfion parameter is further decreasedote 0.58, the effect of
agreement with the results of the linear stability analysisthe second mode is restricted to the initial transient, and a
Note that the shape of the oscillations is markedly differenfong-period oscillatory solution arises for large times, as seen
from that of the oscillations associated with the long-periodin Fig. 5 for b=0.50. The period of the emerging solution,
mode seen in Fig. 4. P=09.40, differs from the valu®=8.01 associated with the

As expected from the results of the linear stability analy-first mode in the linear stability analysis for=0.50. When
sis, the rate of decay of the long-period oscillations decreasebe value ofb is further decreased, the transition to the long-
asb is decreased, so that their effect remains in the solutioperiod oscillatory mode is faster and results in oscillations
for a longer time. The results correspondingbte 0.65 in-  with increased values of both the amplitude and the period,
dicate that this long-period modulation decays away even fomn agreement with the behavior shown in Fig. 4.
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C. The crossover temperature: Dynamic quenching neglecting the small pressure variations that appear in over-

Failure of the detonation is observed as the minimumdrlven detonations with finite overdrives. These acoustic ef-

temperature of the oscillatory solution approaches the crosggds can be incarporated by introducing asymptotic expan-

over value, a behavior previously encountered in Ref. 155i0ns for the flow variables in powers of the small parameter

The branching time associated with each fluid particle de-
pends on the temperature increase that it experiences as it K=
crosses the shock wave. As can be concluded fi@:t7),

1/2

+1qg+11
LA , @.1)

8y q d

of order d”¥2, a development presented elsewhfEhe
E—l _ In(e) 3.2 first-order correction is found to enter in the solution by
TO 1-In(e)/Bg’ ' modifying the leading-order integral constrai@t22 to give

defines the reduced crossover temperature at which the initial
rates of branching and recombination are equal. Evaluating On(m)= Beb(1+«)
the above expression fgBg=10 gives@NC=—2.305 and

ch —1.595 fore=0.05 ande =0.15, respectively. Fluid X
particles with® \y<©y_release only a small amount of heat,

of orderv, as they cross the detonation. This reduced energZonsideration of infinitesimally small temperature perturba-
input leads to smaller propagation velocities and to evenions, 6, then leads to

larger branching times, thereby eventually causing the failure

®NC:BB(

J:x{g,e,\‘[r—(1+ K)EJFdE-1. (4.2

. o0 dx
of the detonation. o  b(1tk)= f —(—) expl— o1+ k) §)dE,
This mechanism of detonation failure is illustrated in 0 Be\dby fy=0
Fig. 5, where dashed lines represent the crossover tempera- 4.3

ture corresponding te =0.05. As the minimum postshock | ¢ . 4.2 and
temperature approaches the crossover value, the period of tAg& ha LeP acemen't ]?(B'l)' Cqmparzlson 0 d(4. )1an (4.3
associated detonation increases. For instance, the solution fm't their acoustic-free versiong.22 and (3.1) suggests

b=0.37 has a perio® = 55.24 with a minimum temperature at, for overdriven detonations witd sufficiently larger
N:._Z 08. Transition from the steady detonation with than unity, the effect of acoustics is limited to small correc-

: 412 - :
®,=0 to the chemically frozen shock wave takes placelionS: Of orderk—~d 7% to the period and amplitude of the

when the minimum temperature falls below crossover duringosciIIations and to the critical value of the bifurcation param-
the initial transient regime, a phenomenon clearly observe§te 0. The acoustic effects do not introduce qualitative
for b=0.36. In the small intermediate parametric rangemod|f|cat|ons for overdriven waves. Since in most applica-
0.37>b>0.36 the solution becomes very dependent on thé;ions the overdrive factad remains belowd=5, these acous-
accuracy of the numerical scheme and on the length of thgc corrections must however in general be considered for
integration domain. Although transition to chaos may occuﬂncrg‘?‘sed iccuracy.b . sis leadind4a? and (4.3

in this parametric rangés observed away from the bifurca- Ince the perturbative analysis lea |ng_ ) and(4.3 _

tion point in previous numerical studfes), this question is “Ses‘?' as an asymptotlcally_ large quant|t_y, the r_esultmg
not investigated further here because the range is small arﬁﬂui‘l'ons dg not applthhedns of order udnlty, that is, for

the adopted integration techniques inappropriate. It may b e? y over ”Vﬁn ?; C lapman—Jougur(]at etonztn()jns. Nhevir-
noted that, in the quasi-frozen solution that emerges at thB'€'€SS. since the development used here embodies the key
smallest value ob shown, the radical mass fraction is of physics underlying the planar detonation instability, no new
order, yielding ® y= — 1/b for the post-shock temperature phenomena are expected to arise as the degree of overdrive is
a resul,t previoustNanticipated i2.24). Clearly, quenching ' decreased, with differences in the stability character of the

of a piston-supported detonation may take place only Whe[rlesulting detonations being only quantitative. This can be

the temperature increase of the associated nearly chemicalII strated by direct comparison of the results of the present
frozen shock wave is such thatlb<®, nalysis with those obtained by Short and Qtfifior a near-
Cc

o . N Chapman-Jouguet detonation witk-1.2. Their numerical
A similar behavior is seen in Fig. 4. Because of the o .
. : . .~ work employs the crossover temperatdrg/ Ty, as a bifur-
relatively large value oy employed in this case, nonnegli-

. : cation parameter, with the rate of the initiation reaction at the
gible heat release can also take place@qy slightly below . - s -
. _— . e Neumann spike//e =1.62< 10 ° and the remaining param-
® .. Pulsating oscillations with minimum Neumann tem-

peratures below crossover, therefore, can exist, as seen fgtrersq:& Be=8, =20, andy=1.2 being held constant

_ . . ) In the computations. Evaluating.1) with these parametric
b=0.37. When _the _blfurcatlon parameter is reducecbto_ values yieldsk=0.505 for the acoustic parameter, no longer
=0.31, this regime is no longer observed, and detonation . .

uenching appears a small quantity as a result of the weak overdrive.

q 9 app ' The evolution withT./Ty of the growth rate and of the
frequency of the two most unstable modes obtained from a
normal mode linear stability analysis of the complete nu-
merical solution(Fig. 2 in Ref. 15 are compared in Fig. 6
The results presented above assume constant pressureyath the solution of (4.3). The value of e =exqpBg(1

corresponds strictly to infinitely large values df thereby — —T}/T.)] can be extracted froni3.2) as a function of the

IV. ACOUSTIC EFFECTS IN MODERATELY
OVERDRIVEN DETONATIONS
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&=0.005 €=0.03 £=0.14 £=0.41 £=1.0 the key parameters that control the stability of the detonation
1.0 . . : o .
and to determine, through a linear stability analysis of the
05 resulting simplified description, the parametric dependence
SQ of each of the modes of instability that were previously dis-
0.0 = cussed.
1.0
05 A. Asymptotic description for the heat-release law
Guided by the previous estimates, we select the initiation
99 rate such that<<e and consider, in particular, the distin-
guished limite In v~~1, for which the induction lengtlg;
0.5 of (2.14) is of order unity. Three different regions can then
SQ be observed in the internal structure exhibited in Fig. 2.
g:g There exists an induction region that extends overée< &,
0! o <=0 in WhICh X is exponentially small, with the effect of initiation
\ «=0.505 being relevant only in a sublayer of thicknes this layer,
20 SQ located immediately downstream from the shock wave,
0075 07 0B 09 1o wherex is of orderv. The effect of branching then causes
T./T? ‘ to grow slowly, eventually increasing to values of order

unity at é=¢;. There then exists a thin branching layer of
FIG. 6. The values ofr andw of the two modes of smaller frequency for thicknesseln(e 1) across which fuel consumption is impor-
q=3, Bs=8, =20, andy=1.2 as obtained from the stability analysis of tant. After fuel is depleted, radical recombination is the only
the complete numerical problem with=1.2 (SQ, from (4.3 with k=0 chemjcal process that remains active, giving an exponen-
and from(4.3) with x=0.505(purely real roots are represented with dashed ,. . . o
lines. tially decreasing profile, as can be anticipated frof8.17)

with f=0. This general type of behavior has been seen in

earlier work?0-22
crossover temperature. Therefore, the parametric study in  With e<1 the effect of radical recombination is very
Ref. 15 for increasing values df. /Ty with Bg=8 corre- limited in both the induction region and the branching layer.
sponds in the present formulation to a parametric study in th&/hen heat release is associated only with radical recombi-
branching rates, with v=1.62< 10" ®s and with the param- nation, the temperature remains approximately constant until
eterb=[(y—1)Bgq] 1=0.208 being held constant. Results after the initiation and branching reactions are frozen, and it
corresponding to the isobaric modet0) are exhibited in is therefore justified to neglect the spatial variatiorkpand
the plot along with those obtained witt= 0.505. kg to study the evolution of the system. To see this more

As can be seen, our analysis correctly predicts the qualiprecisely, note that the temperature increment in the initial

tative behavior of both stability modes. For instan¢é3) layer where initiation is significant can be estimated from
reproduces the pitchfork bifurcation associated with the(2.19 to be of ordemev. Therefore, the temperature varia-
mode of lower frequency, as well as the qualitative variationtion of the initiation reaction can be neglected altogether in
of o and w for the higher-frequency mode. However, as(2.17—(2.18 as long as the criterioge v3,<1 is satisfied.
previously anticipated, the quantitative agreement is poorSimilarly, since the thickness of the branching region, where
with the results of our analysis overestimating significantlyx is of order unity, is of order In(s™1), the temperature
the frequencies and the growth rates of both modes. Alsdncrease that occurs prior to fuel depletion is a small quantity
(4.3 fails to give the critical crossover temperature at theof orderqge In(¢ 1), and can safely be neglected as long as
onset of instability; the exact solution tends to be more stablee In(e 1) Bz<1. Even with non-neutral energetics of initia-
than the predictions derived with strong overdrives. It istion and branching, in view of the small extent to which
however remarkable how the first-order correction for theinitiation proceeds, enthalpy changes associated with these
acoustics improves significantly the quantitative results otwo steps remain negligible, provided only that the heat re-
the isobaric approximation, further supporting the use ofiease in chain branching is small compared with that in re-
(4.3) for calculating the stability characteristics of moder- combination.
ately overdriven detonations. If these conditions are satisfied, thércan be replaced

by 6y in (2.17) and(2.18 to yield the problem
V. THE LIMIT OF SLOW RADICAL RECOMBINATION

dx —
The limit <1, with post-shock temperatures far above gz = ={v+x}—x, (5.)
the crossover value, is amenable to development of an ana- €
lytic description of the solution and reflects realistic condi- df F

tions for many detonations. The analysis of this limit to be dE= —={v+x}, (5.2
derived here will provide, in particular, a simplified explicit 3 €

expression for the evolution equati¢n.2) that reproduces _ _

the nonlinear dynamics previously exhibited in Figs. 4 and 5 x(0)=0, H(O=1, ©.3
with reasonable accuracy. This limit also serves to identifywhere
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T—ex ~ Bsbn . == gin(v e 1)
1+6y% Xx=(1—elne Hexp —| &— iy , (5.7
_ (5.9
v=exd (B~ Bg)On/(1+ 6y)]v, corresponding to the recombination region. Combining now

are the modified values of the chemical-time ratios associ£5'6) and (5.7 finally gives the approximate expression

ated with the instantaneous post-shock temperature. Note s e TFN1
that if departures from the steady solution are limited to val-  x[ £ 6, ]= 1+H(E §i){exq_ (¢ _gi)]_ 1}
ues ofy such thatBgéy and (3,— Bg) Oy remain no larger 1+exg—(1—-e)(§=§&)le]
than order unity, then the limiv<e<1 with g Inv 1~1
also implies that

, (5.8

whereH () denotes the Heaviside step function. The depen-
dence ondy enters in(5.8) throughe and also through the

v<e<l and elnv 1~1, (5.5  modified induction length
yielding the same type of limit for these functions. _ elnvt
The solution to(5.1)—(5.3) in the distinguished limit &= 1o (5.9
— &

(5.5 can be computed by matched asymptotic expansions.
The development, which is not included here, is a straight
forward extension of previous work on a related chain-
branching—chain-breaking problethThe asymptotic analy-
sis provides in particular the reduced representation

v{exf(1-e)éle]-1}

at which the radical profile given itb.8) reaches a valug
=1/2. The accuracy of the above representation is tested in
Fig. 2, where the radical profiles obtained frai®.8) for
fn=(0,%0.05) are compared with numerical integrations of
the original problemsg2.17)—(2.19. As can be seen, the

X= — S — asymptotic description describes with excellent accuracy the
1+vexd(1—-e)éle] shape of the heat-release distribution and its changes with the
— — — - Neumann temperature.
X (1— 5 In{1+ vex (1— &) &=, (5.6 P
for the radical profile, an expression valid in the first ap-B- The simplified evolution equation
proximation until fuel is depleted a@t=¢ In(v e 1)/(1—¢). In writing the integral evolution equatio%.2) associ-
This expression must be supplemented by the approximai@ed with the simplified descriptio(.8) it is important to
profile realize that the main dependencexobn 6y is due to the
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FIG. 8. The time evolution ofd = By for decreasing values of the bifurcation paramdtexs obtained from{5.10 with k=0, £¢=0.05 andv=5.60
x107°.

exponential variation of the branching mg while the  Where a Frank—Kamenetskii linearization has been adopted
variation of Inv~* from its steady value In~* can be ne- for the exponential temperature dependence of the branching

glected in the flrst approximation. Furthermore, small valuegeaction rate. The definition af given in(5.11) yields in the
of Ay of orderBg* yield changes ok of order unity, so that ~Present approximatiof y_=In(e) for the crossover tempera-
it is appropriate to define a rescaled variable of order unityture, which corresponds to the limiting form ¢8.2) for
On=Bgfby . Introducing then(5.8) into (4.2) produces the Bg>1.
evolution equation Because of the simplifications introduced, the normaliza-
tion condition given in(2.9) is satisfied only approximately
b@N(T)=f 1+H(E— &) {exd — (6-§)]- 1} dé—1. by the steady radical profiles obtained fr¢f8), exhibiting
0 l+exd—(l—e)(é—&)le] errors that are of ordes?, i.e., [;x°d¢=1+ (me)?/6. Con-
(5.10 sequently,®y=0 is no longer a solution tg¢5.10), being
geplaced in this simplified description by steady solutions
with small positive values P, of orders?, an outcome to
be kept in mind. The linear stability analysis of the steady
solutions to(5.10 then readily yields

In the present apprOX|mat|on the time-dependent function

8[7 (1+k)€&] and §[T (1+ k) €] can be written from
(5.4) and (5.9 as

e=gexp[—O\[7—(1+ k) €]},

1 (5.11) =[ dx
—_ ehhv b(1+K):J 30 exp(—o(1+k)€)dé, (5.12
S e — O —(1+ 0l —¢ 0 140N/ o
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a straightforward extension ¢4.3), where use must be made TABLE Ii. The critical values ofb (and the corresponding frequenoies

of (5.8 and(5.11) to evaluate the derivative of(&,0 ) the neutrally stable solution of the modes with the two lowest frequencies as
: . ) PN btained from Eq(5.12) with x=0.
Equations(5.10 and (5.11) define the appropriate non- obtained from Fq(5.12 with «
linear evolution equatidnfor the chemistry considered here. £=0.05 £=0.10 £=0.15
Apart from the bifurcation parametérand the acoustic pa- =5 60X 10-°-
rameterx, qnly the two chemic_al—time rgti@ andv of thg  ber (w0c) 0.678(0.867  1.078(0.534  1.408(0.391)
corresponding steady detonation remain in the description,, (wc,) 0.857(6.439  1.810(3.153  2.842(2.053
The limit of slow radical recombination serves, therefore, tor=1.23<10"*
link precisely the formulation of Clavin and B&to a real-  Pe1 (@c1) 0.384(1.348  0.681(0.889  0.946(0.688
istic chemistry model, removing uncertainties associate&;f;‘:gfm,g_ 024701320  0517(6433 08104179
with the model heat-release law utilized in their previousy,_ (,.y 0253(1.710  0.461(1.164  0.644(0.929

work. bes (wc2) 0.077(20.39  0.156(9.913  0.237(6.439
Results of integrations a6.10 with k=0 for £=0.15
and v=23.46x 10 2 are exhibited in Fig. 7, while the corre-
sponding results fog = 0.05 andv=5.60x 10" ° are given in
Fig. 8. Comparison between these results and those of Figs.él_ The parametric dependence of the stability
and 5 clearly indicates thd6.10 provides an accurate de- o ndary
scription of the detonation dynamics. Because of the ap-
proximations introduced in deriving.10, the values ob ~ For the values of the parameters selected above, two
that characterize the transition between the different regimedifferent oscillatory modes appeared associated with the dy-
differ slightly from those of the exact solution. Valuestof namical behavior of overdriven detonations with chain-
associated with the neutrally stable solution of the first twoPranching kinetics. Depending on the existing conditions,
modes, obtained in the present approximation fri2 ~ ©One or th_e other of thg two modes was fqund to govern the
with k=0 in a manner analogous to the treatmen(a) initial oscillatory b_ehawor as the §olutlon bifurcates. Further-
but simpler in that the Runge—Kutta integrations are unnecMore, the numerical results indicate that when the growth

essary, are given in Table Il for comparison with the result§ates of the two modes are both positive, the one with a
in Table I. Typical differences are only a few percent. smaller frequency tends to dominate the final oscillatory so-
The transition to long-period oscillations fer=0.05 in lution. Since both modes may be relevant under different

Fig. 8 follows the sequence previously seen in Fig. 5. Thesonditions, it is therefore of interest to characterize the sta-
two modes are present in the final solution whefalls in  bility domain of each of the two modes, expressing the re-
the range 0.65b>0.61. The plots corresponding to  Sults in terms of a limited number of chemical parameters.
—0.63 in Fig. 8 should be therefore compared with those ~Making use of(5.8) and of the expressions
corresponding tdd=0.61 in Fig. 5. As can be seen, the va-

lidity of the simplified model that was derived in the limit ( de ) . ( dé; ) _ &
e<1 extends far from the bifurcation point. Figures 7 and 8 dey 0,=0 ' doy 0,=0 1-¢’
indicate that, since the asymptotic description givei5i®) (5.13

produces exponentially small valuestverywhere as the o _
crossover temperature is approach@dl0 is even able to to evaluate the derivatived/d®y)e o allows us to write
describe quenching events accurately. the quadrature appearing (6.12 in the explicit form

<[ dx — & [ exp&—dexp—ad)
fo(ﬁ)woex““’@dg‘ 1—8Li1+exr[—(l—s)(§—§i)/s]d§

1jw {1+H(¢-&)[exp &— &) — 1]} e exp— oé)

= ;dé, (5.14
eJoexf(1-e)(é—&)el{1+exd — (1—e)(é—&)le]}
|

where the effect of acoustics has been taken into account in _ % _
defining a modified complex number —EieXF(—0§i)L exg—(§—§&)(o+1)]dé

o=(1+k)o. 5.1 exp(— oé;

o=(1+K)o (5.19 _ & gﬂog.)' 5.16
To develop the needed simplified description, we employ the 7
limit e<1, for which the first quadrature on the right-hand
side of the above equation reduces to if oe is small and gives a negligible contribution otherwise.
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On the other hand, it can be seen that the denominator ap-
pearing in the second quadrature is exponentially large al-
most everywhere, remaining of order unity only for values of
&—¢; of order e. Introducing the integration variable=
—(1—¢€)(&—&)/e and neglecting small terms, of orderor
smaller, reduces this second quadrature to

ex] —(eo+1)s]
(1+e3)?

Eexpl - o) f

- meo
=§exp(—oé)——. (5.1
sin(meo)
Adding now(5.16) and(5.17) and substituting the result into
(5.12 yields, at the level of approximation utilized above

mTET

b=exq—0§i)m,

(5.18

as an implicit equation forr in terms of the parametegs,
and

0.0 0.1 0.2

— b(1+k) 1+« 8/&
= = 1
&i (y—1)Baé; o 3
FIG. 9. The values db¢; , wc1&;, andbg, as obtained froni5.21), (5.22),
1+(y+1)(g+1)/(8yqd) and (5.26.

(5.19
(y—1)Bgge In(v™1)

This last expression defines a modified bifurcation parameter

for describing the stability boundary. Since terms of the formt"€ minimum value oP/¢&;, revealing that the period of the
— resulting oscillation, although of the order of the induction

eo are retained in the derivation db.18), the resultant .. 4 L
timet;, is always larger by a significant amount.

equation adequately describes in particular the high- S ) )
frequency behavior corresponding to large valuesvofof 'I_'he I|m|t|ng f0rr_n of (5.18 for w>1 can be written in
the first approximation as

ordere 1. Equation(5.19 reveals that the stability of the
steady solution depends on the two chemical time ratios

and ¢; , with the effect of acoustics entering as a small cor- In(H)=i(27rn—5§i)+ln _2778(1) —,

rection to the resulting oscillation frequency. To determine expmew)—exp(— mew)

the stability domain of each of the two relevant modes, we (523

investigate neutrally stable solutions=wi=(1+«k)wi.  an equation that can be solved to give

Appropriate simplified expressions for the valueswoéndb - o e

corresponding to the two modes can be obtained f{®:h8) wé&=2mn, b= = —, (5.24

by considering separately the cases O(1) andw> 1. exp(me w) —expl— Tew)
With w~0O(1), taking the asymptotic limig<1 results wheren=1,2,. . . . Apart from the small acoustic correc-

in the approximate expression tion, the associated periods become integer fractions of the
_ - — induction time according t®/¢;=(1+ «)/n. The most un-
b=exp—iw&)w(w+i)/(1+w?). (520 stable mode, that is, the one with the largest associated value

Solving the imaginary and real parts of this equation sepaof b, corresponds to
rately gives the critical value of the bifurcation parameter —
wczfi =2, (5.2

bc,=codwc &), (5.21 yielding

where the frequency of the neutrally stable solution is deter-
mined from the implicit equation be. = ,
2 exp(2mlel &) —exp(—27el &)

wctanwe. &)=1. (5.22 - , , ,
“ € as the critical value of the bifurcation parameter. Equation
The results depend only on the nondimensional inductior{5.25 states that the period of this second mode is equal to
length and are shown in Fig. 9. Fro{®.22), it_can be easily the induction time of the steady detonation plus an a@litional

shown tha’rzjclgi reaches its maximum valuecl§i= /2 as  acoustic delay, that if/& =1+ k. The dependence dn‘c2
&> 1. Using this last result yieldsﬁ/(wclgi)=4(1+ k) for  on the ratio of the branching time to the induction time,

— 47728/§i

(5.26

Downloaded 28 Jan 2002 to 163.117.134.30. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 3, March 2001 Branched-chain one-dimensional overdriven detonations 791

el§;, is also exhibited in Fig. 9. This solution may be ex- becomes short compared with induction, and induction is
pected to become inaccurate at large value§; of strongly temperature sensitive. The period also is lengthened
The agreement between the predictions givelsi2l), somewhat by acoustics because of the associated nonzero
(5.22, (5.29, and(5.26 and those obtained by integrating time required for a signal to return upstream to the shock.
numerically(4.3) is satisfactory, with discrepancies being of  The mode encountered first bsdecreases and bifurca-
ordere. The results provide, therefore, a simple quantitative;jon hegins depends on the value«of Since the conditions
description for the frequencies and stability boundaries of th@yp|ored are restricted mainly & of order unity, decreasing
two relevant modes of instability. The results indicate that, may pe viewed as decreasing the ratio of the branching to
the ;tgbility boun.dary can be better described in terms of thgscompination time or as decreasing the ratié; of branch-
modified bifurcation parameter defined @.19, with over- g g induction time. For values of this branching to recom-
driven detonations withh>1 being always stable to planar pination or induction time ratio larger than about 0.1, the
disturbances. Since the model chemistry employed containgw-frequency mode bifurcates first and dominates the dy-
the most relevant features of general chain-branching ki”etﬁamics for all values ob. For smaller values than this, how-

|cs,|_|t is expected that a similar stability condition holds in ever, values which are of physical relevance in many chemi-
realistic systems. cal systems, it is a high-frequency mode that first bifurcates,
and the dynamics in the vicinity of the bifurcation is domi-

VI. CONCLUSIONS nated by the high-frequency mode. Bss decreased further

Branched-chain detonations for which the heat release ignd the nonlinearity of the oscillations increases, the low-

dominated by recombination possess a bifurcation paramet&duency mode bifurcates and begins to dominate the dy-

b defined in(5.19. At large values of this parameter, the namics, being affected by the high-frequency mode only at

detonations are stable to pulsations, but they become ur%a_aiy times. There is a narrow intermediate range of values

stable when this parameter is small. The time-dependent on8f P in which influences of both modes clearly persist for all
dimensional dynamical behavior depends mainly on thredime. At small values ob where detonation failure is ap-
parametersb, the ratio¢ of the induction timet; to the ~ Proached, the low-frequency mode becomes highly dominant
recombination timeA;" and the ratios of the efolding ~ &nd highly nonlinear. It was not possible numerically to as-
branching timeW/[AgpQYrexp(-Bg)] to Agl. For most Cerain vyhether period douplmg or chaos set in prior to fail-
real detonations of practical interest,is small and¢ is  ure. If this does occur, then it does so over a very small range
roughly of order unity. The “crossover” condition consid- of b. It is possible that these phenomena do not exist at the
ered previously? at which the rate of the branching step is small values ofs addressed here; they were identified
of the same order as the rate of the recombination step, copreviously® only for relatively large values of. If & were
responds tae being of order unity, and steady detonationsto be decreased further, below the lowest value, 0.05, for
cannot exist wherr exceeds unity, because recombinationwhich calculations were performed here, the extent of domi-
rates are then too large compared with branching rates for theation by high-frequency phenomena would increase, and
chemistry to proceed. The present study is focused on smailnportance of additional high-frequency modes possibly
values of &, not thoroughly explored previously, where could emerge. This range of very smalland ¢/¢§; is of
branching is rapid compared with recombination, and thephysical interest and deserves investigation in the future.
dependence on the new bifurcation paramdétas investi- The physical meaning of the bifurcation paramedien

gated for fixed values of. It is found that ifb is decreased (5.19 needs discussion here, beyond that given
below a critical value of order unity, roughly independent of previously— for the related generic parametewhich does
the values of; ande, then a pulsating instability sets in, the not pertain specifically to brancrfd-chain kinetics. A number
amplitude of which increases with decreasimgsoon lead- of different influences occur ib. One is the factor {

ing to failure of the detonation whel is decreased below —1); the more the specific-heat ratio differs from unity, the
another critical value. greater is the tendency towards instability. The present

Two different types of modes of pulsation are found totheory incorporates acoustic effects as a perturbation to the
exist near bifurcation for smak. One is a low-frequency dynamics —of —overdriven detonations. As previously
mode in which the oscillation period is somewhat larger tharxplained; decreasing values of the overdrive parameter
the transit time through the induction region, although typi-(increasing values ok) promote stability, that is, acoustics
cally of the same order. The other is a set of high-frequencj'e stabilizing. Increasingg, the branching activation en-
modes whose periods are integer fractions of this same tra®/gy referred to the thermal enthalpy at the Neumann state,
sit time. All of the modes, including the low-frequency increases the tendency towards instability, as does increasing
mode, are rapid Compared with the slow mode derived irfl: the heat release referred to this same enthalpy. The prOd-
earlier work by applying ideas of activation-energy asymp-uct of (y—1) with these two quantities, (d«) " and the
totics to one-step Arrhenius models. As the ratiof induc- ~ ratio & of induction time to recombination time is the pa-
tion to recombination time increases, however, the period ofameterb™! that mainly controls the stability behavior for
the low-frequency mode lengthens and at least in a qualitabranched-chain chemistry. Thus, for example, increasing the
tive sense approaches the simplified one-step Arrhenius pr@duction time promotes instability, while increasing the re-
diction, as might be expected since in this limit heat releaseombination time tends to suppress it. The effects of acous-
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