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Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation
times in semiconductor superlattices
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A stochastic discrete drift-diffusion model is proposed to account for the effects of shot noise in weakly
coupled, highly doped semiconductor superlattices. Their current-voltage characteristics consist of a number of
stable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If
the initial state corresponds to a voltage on the middle of a stable branch and is suddenly switched to a final
voltage corresponding to the next branch, the domains relocate after a certain delay time. Shot noise causes the
distribution of delay times to change from a Gaussian to a first passage time distribution as the final voltage
approaches that of the end of the first current branch. These results agree qualitatively with experiments by
Rogoziaet al. @Phys. Rev. B64, 041308~R! ~2001!#.
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I. INTRODUCTION

The current-voltage (I -V) characteristics of highly dope
weakly coupled semiconductor superlattices~SL’s! typically
exhibit many sharp branches due to the formation of st
electric field domains.1 Two branches are separated by a d
continuity in the current. The electric field profile associat
with a given branch consists of two regions of constant e
tric field ~domains! separated by a charge accumulation la
~domain boundary!, which is confined to one or severa
quantum wells. The location of the domain boundary dist
guishesI -V branches: as the voltage increases, the dom
boundary is located closer to the injecting contact and
high-field domain increases at the expense of the low-fi
one.2 Branches exhibit hysteresis cycles due to the coex
ence of two or more stable electric field profiles at a giv
value of the voltage. Many interesting dynamical phenom
are associated with these SL’s:~i! response of the SL’s to
sudden changes in bias~which may force relocation of elec
tric field domains,3–6! and ~ii ! self-sustained oscillations o
the current provided the temperature is raised or dopin
lowered.7,8 Motivated by recent experimental evidence,9,10

we shall present in this paper a stochastic theory of dom
relocation in highly doped SL’s.

In relocation experiments,5,9,11 a doped SL displaying a
multistableI -V characteristic is biased~typically! on the first
plateau—say, in the middle of a branch. The correspond
field configuration has two domains separated by a dom
wall which is an accumulation layer. Then the voltage
suddently increased fromV0 to V15V01DV and the time
evolution of the current is recorded. Depending onDV, the
domain wall has to relocate so that a stable field configu
tion appropriate to the new voltage is reached.5 The outcome
has been studied numerically using a discrete resonant
neling model with Ohmic boundary conditions.6 For any
DV,0 as well as for small positiveDV, the relocation of the
domain wall always occurs by a direct movement of t
charge monopole forming the domain boundary to its fi
0163-1829/2002/65~19!/195308~8!/$20.00 65 1953
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position. This movement may be either upstream or dow
stream the electron flow as needed. However, for sufficie
largeDV.0, a charge dipole is injected at the emitter co
tact in addition to the existing monopole, because the la
cannot move upstream beyond one SL period without
countering a stable field configuration.6 Recent experiments
by Rogoziaet al.11 confirm this theoretical picture. Othe
experiments have shown that the relocation time for
jumps (DV.0) close to the discontinuity in theI -V charac-
teristic is random and have also investigated its probab
distribution function.9,10 What is causing randomness in th
relocation time? In this paper we argue in favor of shot noi

Shot noise occurring during a transport process is du
fluctuations in the occupation number of states caused b~i!
thermal random initial fluctuations and~ii ! the random nature
of quantum-mechanical transmission and reflection~partition
noise!. The latter is in turn caused by the discrete nature
the electric charge.

The rest of the paper is organized as follows. In Sec.
we derive a stochastic discrete drift-diffusion~DDD! model
from the previously studied deterministic one~see Ref. 12!
considering only partition noise~thermal noise is negligible
in the low-temperature limit!. The stochastic DDD model ha
multiplicative white noise terms obeying Poissonian sta
tics and it has been solved numerically by means o
second-order scheme proposed by Platen~Ref. 16, page
485!. The results of numerically solving the stochastic mod
are reported in Sec. III. Our numerical results agree qua
tively with the experiments of Rogoziaet al.,9 thereby en-
forcing the idea that shot noise is responsible for the
served fluctuations in domain relocation time. Details of t
numerical scheme and comparison to rougher schemes
to the results of solving the deterministic model with rando
initial conditions are contained in the Appendix.

II. STOCHASTIC DISCRETE DRIFT-DIFFUSION MODEL

In weakly coupled SL’s, typically the scattering times a
much shorter than the escape times from quantum wells
©2002 The American Physical Society08-1
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their turn, the latter are shorter than typical dielectric rela
ation times. This implies that the dominant mechanism
vertical charge transport is sequential resonant tunneling
that the tunneling current across barriers can be considere
be stationary. An appropriate discrete model consists of
Poisson and charge continuity equations for the tw
dimensional~2D! electron densityni and average electric
field Fi at each SL period:2

Fi2Fi 215
e

«
~ni2ND

w!, i 51, . . . ,N, ~1!

dni

dt
5Ji 21→ i2Ji→ i 11 , i 51, . . . ,N. ~2!

HereND
w , «, andeJi→ i 11 are the 2D doping density at th

i th well, the average permittivity of the SL, and the tunneli
current density across thei th barrier, respectively.12 We can
differentiate Eq.~1! with respect to time and eliminateni by
using Eq.~2!. The result can be written as a form of Am
père’s law for the balance of the current:

«

e

dFi

dt
1Ji→ i 115J~ t !. ~3!

HereeJ(t) is the total current density through the SL’s, equ
for all SL periods, and« dFi /dt is the displacement curren
at the i th SL period. To have a closed system of equatio
we need a constitutive relation linkingeJi→ i 11 to the un-
knownsni andFi . For a weakly coupled SL the stationa
sequential tunneling current has been calculated by the tr
fer matrix Hamiltonian method13 or by the Green function
formalism.14 In both cases, for sufficiently high temperatu
Ji→ i 11 may be approximated by a discrete drift-diffusio
law Ji→ i 11

(d) 5niv(Fi)/ l 2D(Fi) (ni 112ni)/ l
2.12 The SL pe-

riod is l and the electron drift velocityv(F) and the diffusion
coefficientD(Fi) have the forms depicted in Fig. 1. In ou
numerical calculations, we have used parameters corresp
ing to the 9/4 SL of Ref. 7 at a temperature of 5 K. The th
first subbands have energies of 44, 180, and 410 meV

FIG. 1. Drift velocity and diffusion coefficient corresponding
the 9/4 GaAs/AlAs SL of Ref. 7.
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spectively, and we assume that the spectral functions of
wells are Lorentzians with half-widths of 10 meV.

The DDD model given by Eqs.~1! and ~3! and Ji→ i 11

5Ji→ i 11
(d) has a conceptual difficulty coming from charg

quantization that motivates the introduction of shot no
terms. The electric charge in each SL period,eA(ni2NDw!
(A is the SL cross section!, should be a multiple of the elec
tron chargee. This implies that the true charge fluctuat
about the mean value given by the deterministic DD
model. To analyze charge fluctuations, we may use
Langevin ideas and add an appropriate stochastic term
Ji→ i 11

(d) . The SL cross sectionA is very large~a circular cross
section of diameter 120mm wide as compared to a SL pe
riod of l 513 nm) and the barrier transmission coefficient
very small. Then we may use the classic Poissonian s
noise to model charge fluctuations:15

Ji→ i 115
niv

( f )~Fi !2ni 11v (b)~Fi !

l
1Ji→ i 11

(r ) ~ t !, ~4!

for i 51, . . . ,N21, where Ji→ i 11
(r ) represents the random

current which satisfies

^Ji→ i 11
(r ) &50, ~5!

^Ji→ i 11
(r ) ~ t ! Jj→ j 11

(r ) ~ t8!&5d i j d~ t2t8!~Al !21@niv
( f )~Fi !

1ni 11v (b)~Fi !#, ~6!

andv (b), v ( f ) are defined as follows:

v (b)~F !5
D~F !

l
, v ( f )~F !5v (b)~F !1v~F !. ~7!

The logic behind this form of random tunneling current is
follows. We consider that uncorrelated electrons are arriv
at thei th barrier with a distribution function of time interval
between arrival times that is Poissonian.15 Then the shot
noise spectrum for the currenteJi→ i 11

(r ) A is given by the
average current@niv

( f )(Fi)1ni 11v (b)(Fi)# e2A/ l , which in
turn yields Eq.~6!. As remarked in Ref. 15, this procedur
assumes low transmission through the barriers and it yie
an upper bound for the shot noise amplitude. In addition,
tunneling current is approximated by a discrete dr
diffusion expression whose transport coefficients~drift ve-
locity, diffusivity, . . . ! will be quantitatively different from
those of the actual sample used in experiments. Given
exponential dependence of several quantities, relativ
small differences in the location of extrema of the drift v
locity, etc., may produce substantial differences. Thus,
mathematical model provides quantitative differences in
results but it yields the correct qualitative behavior.

The special nature of the emitter and collector layers
considered in the boundary conditions, given by Eq.~3! with
i 50 and i 5N and different constitutive relations for th
tunneling currents:12

J0→15 j e
( f )~F0!2

n1w(b)~F0!

l
1J0→1

(r ) , ~8!
8-2
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JN→N115
nNw( f )~FN!

l
1JN→N11

(r ) . ~9!

Here we still havêJi→ i 11
(r ) &50 for i 50 andi 5N, while the

correlations are

^J0→1
(r ) ~ t !J0→1

(r ) ~ t8!&5
j e
( f )~F0!l 1n1w(b)~F0!

Al
d~ t2t8!,

~10!

^JN→N11
(r ) ~ t !JN→N11

(r ) ~ t8!&5
nNw( f )~FN!

Al
d~ t2t8!. ~11!

The emitter current densitye je
( f ) , the emitter backward ve

locity w(b), and the collector forward velocityw( f ) are func-
tions of the electric field depicted in Fig. 2.12

In addition to the boundary conditions, the Ampe`re and
Poisson equations should be supplemented with the vol
bias condition

(
i 51

N

Fi l 5V, ~12!

where V denotes voltage. Equations~1!, ~3!, and ~4!–~12!
form a closed system of stochastic equations forni , Fi , and
J. They constitute the stochastic DDD model. To analyze
model, it is convenient to render all equations dimensionle
Let us denote by (FM ,vM) the coordinates of the first pos
tive maximum of the drift velocityv(F). We adoptFM , ND

w ,
vM , vMl , eND

wvM / l , and«FMl /(eND
wvM) as units ofFi , ni ,

v(F), D(F), eJ, and t, respectively. According to the pa
rameters of the superlattice previously referred to, we fi
FM511.60 kV/cm, ND

w51.531011 cm22, vM

5718 cm/s, vM l 59.3331024 cm2/s, and eND
wvM / l

513.27 A/cm2. For a circular sample with a diameter o
120 mm, the units of current and time are 1.501 mA a
1.021 ns, respectively. Then Eqs.~1!, ~3!, and ~4!–~12! be-
come

Ei2Ei 215n~ni21!, ~13!

FIG. 2. Current–field contact characteristics corresponding
the 9/4 GaAs/AlAs SL of Ref. 7.
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J~ t !5
dEi

dt
1niv i2Di~ni 112ni !

1aAni~v i1Di !1Dini 11 j i~ t !, ~14!

J~ t !5
dE0

dt
1Je~E0!2We~E0!n1

1aAJe~E0!1We~E0!n1 j0~ t !, ~15!

J~ t !5
dEN

dt
1Wc~EN!nN1aAWc~EN! nN jN~ t !, ~16!

f5
1

N (
i 51

N

Ei . ~17!

Here we have used the same symbols for dimensional
dimensionless quantities except for the electric field and
coefficient functions in the boundary conditions. The para
eters n5eND

w/(«FM)'1.772, f5V/(FMNl), and a
5Ae/(«FMA)'3.23231024 are the dimensionless doping
the average electric field~bias!, and the noise amplitude, re
spectively.j i(t) is a zero-mean Gaussian white noise w
correlation ^j i(t)j j (t8)&5d i j d(t2t8) @j i(t)5j i(tm)/ADt,
where the j i(tm) are independent identically distribute
~i.i.d.! normalized Gaussian random variables for each d
crete timetm andDt is the dimensionless time step#. The rest
of the coefficients in Eqs.~13!–~16! are defined by

v i[v~Ei !5
v~FMEi !

vM
,

Di[D~Ei !5
D~FMEi !

VMl
,

Je~E0!5
j e
( f )~FME0!l

ND
wvM

,

We~E0!5
W(b)~FME0!

vM
,

Wc~EN!5
W( f )~FMEN!

vM
. ~18!

The previous system of equations can be further simplifi
since the electron densitiesni and the total current densit
J(t) can be expressed in terms of the electric field and
bias. Differentiating Eq.~17! with respect to time and using
Eqs. ~15! and ~16!, we obtain an expression for the tot
current densityJ(t):

o

8-3
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df

dt
5

1

N (
i 51

N
dEi

dt
5J2

1

N (
i 51

N21

@ni~v i1Di !2ni 11Di #

2
nNWc~EN!

N
2

a

N (
i 51

N21

Aniv i1~ni1ni 11!Di j i~ t !

2
a

N
AnNWc~EN! jN~ t !.

Then the total current can be written as

J5J11J2•j, ~19!

J15
df

dt
1 (

i 51

N21
ni~v i1Di !2ni 11Di

N
1

nNWc~EN!

N
,

~20!

~J2!050, ~21!

~J2! i5
a Aniv i1~ni1ni 11!Di

N
, 1< i ,N, ~22!

~J2!N5
a AnNWc~EN!

N
, ~23!

j5„j0~ t !, . . . ,jN~ t !…T. ~24!

We can now insert these equations into the Ampe`re Eqs.
~14!–~16! and eliminateni by using Eq.~13!, thereby obtain-
ing a stochastic differential equation of the following form

dE

dt
5HS E,

df

dt D1S~E!•j~ t !, ~25!

for the (N11)-dimensional vector electric fieldE
5(E0 , . . . ,EN)T. Here S(E) is a (N11)3(N11) matrix
andH is a (N11)-dimensional vector having obvious form
which we do not write explicitly for the sake of concisene

The stochastic differential equation~25! has been numeri
cally solved by using two different methods: a first ord

FIG. 3. Static electric field profile atV52.1 V.
19530
.

r

Heun scheme~modified Euler scheme! and the second-orde
scheme proposed by Platen.16 The second numerical schem
is rather more costly, but we had to use it to avoid th
numerical errors mask the effects due to charge fluctuatio
Technical details on numerical schemes and a compariso
their performances are given in the Appendix. The results
our simulations are reported in the next section.

III. NUMERICAL RESULTS

We have numerically investigated the sample of Ref
that was used in the relocation experiments.5,9 It consists of a
N540 period SL with 9-nm-wide GaAs wells and 4-nm
wide AlAs barriers, and 2D dopingND

w51.531011 cm22, at
a temperatureT55 K. We have solved numerically the non
dimensional equations in the units and dimensionless par
eters introduced in Sec. II.

Figures 3 and 4 show a typical static electric field profi

FIG. 4. Part of the first plateau of theI -V characteristics.

FIG. 5. Time trace of the current when the voltage is switch
from V050.65 V toVf50.737 V.
8-4
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NONLINEAR STOCHASTIC DISCRETE DRIFT- . . . PHYSICAL REVIEW B 65 195308
~with two coexisting domains! and the first plateau of the
time-averagedI -V characteristics~obtained by voltage up
sweeping!. To ascertain the influence of charge fluctuatio
in domain relocation, we start by setting a stationary fi
configuration corresponding to a voltageV050.65 V on the
lower branch of Fig. 4. At timet50, the voltage increase
~in one time step! to its final valueVf on the nextI -V branch.

Time traces of the current are depicted in Figs. 5–7. N
tice that the vertical scale has been augmented sufficient
see the fluctuations of the current, which are typically ab
0.02 in size. To compare our numerical results to experim
tal ones, we need to characterize the domain relocation ti
and their distribution function. After a voltage switch, ea
realization of the random solution of Eq.~25! gives rise to
jumps in the mean current as depicted in Figs. 5–7. We c
pare the time trace of the current~time averaged over inter
vals of five time dimensionless units! to the value of the
current in staticI -V branches. The first timet0 that the cur-
rent time trace differs less than 531024 dimensionless units
from its final stationary value, we consider that the dom

FIG. 6. As in Fig. 5, but with a final voltageVf50.75 V.

FIG. 7. As in Fig. 5, but with a final voltageVf50.755 V.
19530
s
d

-
to
t

n-
es

-

n

relocation has ended. The distribution of time delayst0 taken
over many realizations is then recorded. For a large volt
switch, the time delay before the current falls from its initi
value to its final level is shorter than for a smaller volta
switch; compare Figs. 5 and 6. The differences between
time delays involved in these two cases~about 40 ns! are
smaller than those recorded in experiments.9 These differ-
ences occur because of overestimation of the fieldFM and
the shot noise amplitude by our theoretical calculations w
respect to those of the experimental sample, as we mentio
before.

In Ref. 5 it was claimed that the time delay depends
ponentially on the difference between the final value of
stabilized currentI and the maximum value of the current~or
mimimum value in the case of a down switch! at the initial

FIG. 8. ~a! Mean relocation time for different final voltages.~b!
Logarithm of the mean delay time vs current difference betwe
final current and the maximum or minimum currentI m of the initial
branch.

FIG. 9. Time delay distribution forVf50.737 V. Data from
numerical simulations have been fitted to a FPT distribution.
8-5
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branch,I m . Then the relocation time~measured in units o
1.021 ns! depends exponentially on the current differencI
2I m , i.e.,

expS buI 2I mu
I M

1cD . ~26!

We have observed this dependence in our numerical re
too. The dimensionless constantsb andc areb564.9866 and
c51.6717. HereI M51.501 mA is the unit of current. In the
experiments of Luoet al.,5 I M5136 mA ~approximately the
height of the first maximum of the current in the inset of F
1!, b510.74~6 times smaller than the numerically calculat
value!, andc53.34 ~2 times larger than the numerically ca
culated value!. We thus confirm the exponential dependen
of the relocation time on the current difference and observ
good qualitative agreement between numerically and exp
mentally obtained values.

Figure 8~a! shows the mean relocation time obtained
our simulations as a function ofVf . As the final voltage
approaches that corresponding toI M , the relocation time in-
creases. Figure 8~b! depicts the mean relocation time as
function of (I 2I m) on a semilogarithmic scale forVf values
between 0.737 and 0.735 V. The solid line denotes a linea
to the data points, which agrees with the exponential
proposed by Luoet al.5 These figures are qualitatively sim
lar to the corresponding ones depicted from experime

FIG. 10. Time delay distribution forVf50.75 V. Data from
numerical simulations have been fitted to a Gaussian distributi

TABLE I. Descriptive statistics of the relocation time distribu
tions obtained with the Heun scheme.

Heun Vf50.737 Vf50.75

Lower limit ~ns! 77.692 43.775
Upper limit ~ns! 128.048 45.633
Mean ~ns! 87.863 44.564
Standard deviation~ns! 6.803 0.299
Skewness coeff. 1.840 0.131
19530
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data in Refs. 9 and 5. Quantitative differences are due to
above-mentioned discrepancies inFM , the tunneling current,
and the shot noise amplitude. Now we focus on the distri
tion of switching times. Typically, delay distributions are e
ther close to symmetric Gaussians or they are asymme
depending on how farVf is from the limit point of theI -V
characteristics. We have fitted our numerical distributions
least squares either to a Gaussian density:

W~ t,t,s!5
1

sA2p
expS 2

~ t2t!2

2s2 D ~27!

or to a first passage time~FPT! distribution

W~ t,y,b!dt5Ay
2b

p
expS 2

byz2

2 Ddz, ~28!

where

z5
1

Aexp~2bt !21
. ~29!

The parameters of these distributions aret ~mean relocation
time! ands ~standard deviation! for the Gaussian andy and
b for the FPT distribution. The results of our fitting are d
picted in Figs. 9 and 10.

.

FIG. 11. Time delay distribution forVf50.737 calculated with a
deterministic Heun scheme and random initial conditions.

TABLE II. Descriptive statistics of the relocation time distribu
tions obtained with the Platen scheme.

Platen Vf50.737 Vf50.75

Lower limit ~ns! 77.827 43.942
Upper limit ~ns! 115.025 44.960
Mean ~ns! 87.635 44.541
Standard deviation~ns! 6.339 0.167
Skewness coeff. 1.4237 20.2791
8-6
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These results agree qualitatively with the experimen
ones of Rogoziaet al.9 As in Ref. 9, our Figs. 9 and 10 show
that for values of the voltage far away from the current jum
the time delay distribution changes from an asymmetric F
distribution to a very narrow symmetric Gaussian distrib
tion as Vf departs from the voltage corresponding to t
current jump. These features have a numerical expressio
terms of descriptive statistics like the mean, the stand
deviation, or the skewness coefficient as shown in the ta
of the Appendix. The numerically calculated largest a
smallest delay times are also presented.

FIG. 12. Time delay distribution forVf50.75 calculated with a
deterministic Heun scheme and random initial conditions.
ut
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IV. CONCLUSIONS

We have studied how the shot noise due to charge qu
tization affects the relocation time of electric field domai
after a suddent switch of the voltage. We find that the me
relocation time depends exponentially on the difference
tween the value of the current at the final voltage and
value of the current at the end of the branch correspondin
the initial voltage. The distribution function of delay time
after a voltage switch changes from Gaussian to a FPT
tribution as the final voltage approaches the limit point of t
stationaryI -V characteristics. These results are in qualitat
agreement with experiments.
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TABLE III. Descriptive statistics of the relocation time distribu
tions obtained with pertubed initial conditions.

Vf50.737 Vf50.75

Mean ~ns! 88.916 44.579
Standard deviation~ns! 1.773 0.045
Skewness coeff. 0.912 0.255
gives the
APPENDIX: NUMERICAL SCHEME

This appendix is devoted to explain some technical details of the simulations. The Platen second-order scheme
vector fieldEn11 at discrete timet1Dt as the following function ofEn at discrete timet ~Ref. 16!:

En115En1
1

2 FHS Y,
df

dt D1HS En,
df

dt D GDt1
1

4 (
j 51

N11 F @Sj~M1
j !1Sj~M2

j !12Sj~En!#DWj1 (
r 51,rÞ j

N11

@Sj~U1
r !1Sj~U2

r !

22Sj~En!#DWj G1
1

4 (
j 51

N11 F @Sj~M1
j !2Sj~M2

j !#$~DWj !22Dt%1 (
r 51,rÞ j

N11

@Sj~U1
r !2Sj~U2

r !#$DWjDWr1Vr , j%G .
d
g a
lgo-
al
Here Sj (•) is the j th column of S(•), U65En

6S(En) jADt, andH andS are evaluated at

Y5En1HS En,
df

dt DDt1 (
j 51

N11

S~En! jDWj ,

M6
j 5En1HS En,

df

dt DDt6Sj~En!ADt.

DWj are independent Gaussian random variables distrib
with zero mean and varianceDt, whereas theVj 1 , j 2

are in-
dependent two point random variables that satisfy
ed

P~Vj 1 , j 2
56Dt !5

1

2
,

Vj 1 , j 1
52Dt, Vj 1 , j 2

52Vj 2 , j 1
.

We have used a time step ofDt51024 ~in dimensionless
units! of the same order as the noise amplitudea. The values
of the random variablesV and W have been generate
through a random number generator improved by usin
seed selector depending on the computer clock and an a
rithm which allows to avoid the sequential correlation usu
8-7
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in this sort of generators.17 The Platen scheme is secon
order weakly convergent in the following sense. Letg(E) be
any sufficiently smooth scalar function@with 2(b11) con-
tinuous derivatives providedb is the order of the scheme#.
Let us fix the time instant att corresponding to discrete tim
n. Then

u^g~En!&2^g~E!&u<C~Dt !2,

for any DtP(0,d0), whereC andd0 are positive constants
The Platen numerical scheme is certainly more complica
and costly than even a stochastic Heun~modified Euler!
first-order scheme. We have had to use it to minimize
effects of numerical noise coming from floating-poi
arithmetic ~even our high-precision 64-bit arithmetic! and
that inherent in interpolating our transport coefficients a
contact functions in the boundary conditions. In fact, in th
absence of the noise, both the Heun and the Platen sch
become the well-known deterministic Heun~improved Eu-
ler! scheme—that is, a second-order Runge-Kutta metho

En115En1
Dt

2
@H~En!1H„En1H~En!Dt…#.
.

e

.

19530
d

e

d
-
es

:

However, both schemes differ in their treatment of the no
the stochastic Heun method is weakly first order whereas
Platen scheme is second order. The result obtained by u
the Platen scheme exhibits less dispersion than that rea
by the Heun method, as shown in Tables I and II. An app
priate treatment of the noise term avoids the presence
artificial numerical effects. The effects of the numerical p
turbations can be illustrated as follows. Let us use the de
ministic Heun scheme with random initial conditions corr
sponding to disturbances of the stationary field profile
voltageV0 and suddenly switch to voltageVf . The domain
relocation times have been measured and they give ris
the distributions of Figs. 11 and 12. We have compared
mean, standard deviation, and skewness coefficient18 of these
distributions to those corresponding to the use of the stoc
tic Heun and Platen schemes; see Tables I, II, and III. No
that the mean relocation times are similar, while the num
cal viscosity contributes to scatter the results. The shot n
does not change the mean values given by the determin
model, but the dispersion measured by the standard devia
increases due to numerical effects~larger in the Heun
scheme!. The use of a numerical scheme that reduces th
effects is then clearly justified.
,

,

v.

r

g,

a
al
*Electronic address: bonilla@ing.uc3m.es
†Electronic address: ossanche@ugr.es
‡Electronic address: jsoler@ugr.es
1H.T. Grahn, R.J. Haug, W. Mu¨ller, and K. Ploog, Phys. Rev. Lett

67, 1618~1991!.
2L. L. Bonilla, in Nonlinear Dynamics and Pattern Formation in

Semiconductors and Devices, edited by F.-J. Niedernostheid
~Springer, Berlin, 1995!, Chap. 1.

3J. Kastrup, F. Prengel, H.T. Grahn, K. Ploog, and E. Scho¨ll, Phys.
Rev. B53, 1502~1996!.

4Y. Shimada and K. Hirakawa, Jpn. J. Appl. Phys., Part 136, 1944
~1997!.

5K.J. Luo, H.T. Grahn, and K.H. Ploog, Phys. Rev. B57, R6838
~1998!.

6A. Amann, A. Wacker, L.L. Bonilla, and E. Scho¨ll, Phys. Rev. E
63, 066207~2001!.

7J. Kastrup, R. Hey, K.H. Ploog, H.T. Grahn, L.L. Bonilla, M
Kindelan, M. Moscoso, A. Wacker, and J. Gala´n, Phys. Rev. B
55, 2476~1997!.

8D. Sánchez, L.L. Bonilla, and G. Platero, Phys. Rev. B64,
115311~2001!.

9M. Rogozia, S.W. Teitsworth, H.T. Grahn, and K.H. Ploog, Phy
s.

Rev. B64, 041308~2001!.
10M. Rogozia, H. T. Grahn, S. W. Teitsworth, and K. H. Ploog

Physica B314, 427 ~2002!.
11M. Rogozia, S. W. Teitsworth, H. T. Grahn, and K. H. Ploog

Phys. Rev. B~to be published!.
12L.L. Bonilla, G. Platero, D. Sa´nchez, Phys. Rev. B62, 2786

~2000!.
13R. Aguado, G. Platero, M. Moscoso, and L.L. Bonilla, Phys. Re

B 55, R16 053~1997!.
14A. Wacker, inTheory of Transport Properties of Semiconducto

Nanostructures, edited by E. Scho¨ll ~Chapman and Hall, Lon-
don, 1998!, Chap. 10.

15Ya.M. Blanter and M. Bu¨ttiker, Phys. Rep.336, 1 ~2000!.
16P. E. Kloeden and E. Platen,Numerical Solution of Stochastic

Differential Equations~Springer, Berlin, 1992!.
17W. H. Press, B. P. Flannery, S. A.Teukolsky, and W. T. Vetterlin

Numerical Recipes in C: The Art of Scientific Computing~Cam-
bridge University Press, Cambridge, UK, 1988!.

18The skewness~Fisher! coefficient measures the asymmetry of
distribution and is calculated as the distribution third centr
moment divided by the third power of its standard deviation.
8-8


