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Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation
times in semiconductor superlattices
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A stochastic discrete drift-diffusion model is proposed to account for the effects of shot noise in weakly
coupled, highly doped semiconductor superlattices. Their current-voltage characteristics consist of a number of
stable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If
the initial state corresponds to a voltage on the middle of a stable branch and is suddenly switched to a final
voltage corresponding to the next branch, the domains relocate after a certain delay time. Shot noise causes the
distribution of delay times to change from a Gaussian to a first passage time distribution as the final voltage
approaches that of the end of the first current branch. These results agree qualitatively with experiments by
Rogoziaet al. [Phys. Rev. B64, 041308R) (2001)].

DOI: 10.1103/PhysRevB.65.195308 PACS nuni§er05.40—a, 73.50.Fq, 73.61.Ey, 05.45a

[. INTRODUCTION position. This movement may be either upstream or down-

stream the electron flow as needed. However, for sufficiently

The current-voltagel€V) characteristics of highly doped large AV>0, a charge dipole is injected at the emitter con-

weakly coupled semiconductor superlatti¢g€s’s) typically tact in addition to the existing monopole, because the latter

exhibit many sharp branches due to the formation of stati€annot move upstream beyond one SL period without en-
electric field domaind.Two branches are separated by a dis-countering a stable field configuratiBriecent experiments
continity in the current. The electric field profile associated?y Rogoziaet al** confirm this theoretical picture. Other

with a given branch consists of two regions of constant elec€*Periments have shown that the relocation time for up

tric field (domaing separated by a charge accumulation layedUMpPS (AV>0) close to the discontinuity in theV charac-
(domain boundary which is confined to one or several teristic is random and have also investigated its probability

quantum wells. The location of the domain boundary distin—d'smbmIon functior:" What is causing randomness in the

guishesl-V branches: as the voltage increases, the doma|F1elocatlon time? In th.|s paper we argue in favor of Sh.°t noise.
Shot noise occurring during a transport process is due to

boundary is located closer to the injecting contact and th ! : . _
. . S . Tluctuat th t b f stat b
high-field domain increases at the expense of the Iow-ﬂelgUC uations in the occupation number of states cause)by

2 g h hibit h . les d h ~ thermal random initial fluctuations artii) the random nature
one: Branches exhibit hysteresis cycles due to the Coexistyt o,antum-mechanical transmission and reflectjmartition

ence of two or more stable electric field profiles at a givenygise The latter is in turn caused by the discrete nature of
value of the voltage. Many interesting dynamical phenomengne electric charge.

are associated with these SL§) response of the SL's 10 The rest of the paper is organized as follows. In Sec. I,
sudden changes in bigshich may force relocation of elec- \ye derive a stochastic discrete drift-diffusiéBDD) model
tric field domains}™9 and (i) self-sustained oscillations of f;om the previously studied deterministic ofeee Ref. 12
the CU”?;“ provided the temperature is raised or doping igonsjdering only partition noiséthermal noise is negligible
lowered. Motivated by recent experimental evidericé, in the low-temperature limjt The stochastic DDD model has
we shall present in this paper a stochastic theory of domaifyjtiplicative white noise terms obeying Poissonian statis-
relocation in highly doped S'g'fi , , tics and it has been solved numerically by means of a
In relocation experimentt®!! a doped SL displaying a second-order scheme proposed by PlatBef. 16, page
multistablel -V characteristic is biasedypically) on the first  4g5) The results of numerically solving the stochastic model
plateau—say, in the middle of a branch. The corresponding;e reported in Sec. Ill. Our numerical results agree qualita-
field configuration has two domains separated by a domalﬂ\,e|y with the experiments of Rogoziet al.® thereby en-
wall which is an accumulation layer. Then the voltage isforcing the idea that shot noise is responsible for the ob-
suddently increased frond, to V,=Vo+AV and the time  gepved fluctuations in domain relocation time. Details of the
evolution of the current is recorded. Depending&d, the  ymerical scheme and comparison to rougher schemes and

domain wall has to relocate so that a stable field configurag the results of solving the deterministic model with random
tion appropriate to the new voltage is reachdthe outcome initial conditions are contained in the Appendix.

has been studied numerically using a discrete resonant tun-

neling model with Ohmic boundary conditioRsFor any || srocHASTIC DISCRETE DRIFT-DIFFUSION MODEL
AV<O0 as well as for small positivaV, the relocation of the

domain wall always occurs by a direct movement of the In weakly coupled SL’s, typically the scattering times are
charge monopole forming the domain boundary to its finalmuch shorter than the escape times from quantum wells. In
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4 - 6 spectively, and we assume that the spectral functions of the

wells are Lorentzians with half-widths of 10 meV.
The DDD model given by Eq91) and (3) and J;_; 1

(2
@3 Ng J(_,,+l has a conceptual difficulty coming from charge
£ T 4 quantization that motivates the introduction of shot noise
" = terms. The electric charge in each SL peried(n;—Npw)
1‘; .1 5 (A is the SL cross sectignshould be a multiple of the elec-
g 8 tron chargee. This implies that the true charge fluctuates
S 3 about the mean value given by the deterministic DDD
_,>__ 2 2] model. To analyze charge fluctuations, we may use the
S 11 @ X Langevin ideas and add an appropriate stochastic term to
£ ®) J@. ... The SL cross sectioA is very large(a circular cross
a

section of diameter 12Qum wide as compared to a SL pe-
0 . 0 ‘ riod of =13 nm) and the barrier transmission coefficient is

o 10 20 o 10 20 very small. Then we may use the classic Poissonian shot
Field (10" V/em) Field (10" Viem) noise to model charge fluctuatiots:
FIG. 1. Drift velocity and diffusion coefficient corresponding to ) )
the 9/4 GaAs/AlAs SL of Ref. 7. Nt (F) —ni v (Fy)

Ji*)i+l [ +‘J|ﬂ|+1(t) (4)
their turn, the latter are shorter than typical dielectric relax- "
ation times. This implies that the dominant mechanism ofor i=1,... N—1, whereJ;”;,, represents the random
vertical charge transport is sequential resonant tunneling aréHrrent Wh'Ch satisfies
that the tunneling current across barriers can be considered to

be stationary. An appropriate discrete model consists of the (30, 1)=0, )
Poisson and charge continuity equations for the two-
dimensional(2D) electron densityn; and average electric ~ (J{";, (1) I, ,(t"))=&;8(t—t")(AD " [np(F))
field F; at each SL period: o)
+ni 10 (F)], (6)
e
Fi—Fi,lzg(ni—N‘g), i=1,...N, (1) andv®, v are defined as follows:
D(F)
dn , vO(F)=——, vOF) =0v®(F)+v(F). (@)
d_tlz‘]i—l—>i_‘]i—>i+1! i=1,...N. (2) |

The logic behind this form of random tunneling current is as
follows. We consider that uncorrelated electrons are arriving
at theith barrier with a distribution function of time intervals
between arrival times that is PoissonianThen the shot
noise spectrum for the curremtX” ., A is given by the

HereNJ, €, andeJ_,; ., are the 2D doping density at the
ith well, the average permittivity of the SL, and the tunneling
current density across théh barrier, respectivel{? We can
differentiate Eq(1) with respect to time and eliminatg by
using Eq.(2). The result can be written as a form of Am-

. . average currentn;u M (F,)+n,,,0®(F;)]€?All, which in
pere’s law for the balance of the current: turn yields Eq.(6). As remarked in Ref. 15, this procedure
e dF; assumes low transmission through the barriers and it yields
P +Ji 1= J(1). 3 an upper bound for the shot noise amplitude. In addition, the

tunneling current is approximated by a discrete drift-
Heree J(t) is the total current density through the SL's, equaldiffusion expression whose transport coefficie(dsift ve-
for all SL periods, and: dF;/dt is the displacement current locity, diffusivity, ...) will be quantitatively different from
at theith SL period. To have a closed system of equationsthose of the actual sample used in experiments. Given the
we need a constitutive relation linkingJ, .., to the un-  exponential dependence of several quantities, relatively
knownsn; andF;. For a weakly coupled SL the stationary small differences in the location of extrema of the drift ve-
sequential tunneling current has been calculated by the tranigcity, etc., may produce substantial differences. Thus, the
fer matrix Hamiltonian methdd or by the Green function mathematical model provides quantitative differences in the
formalism* In both cases, for sufficiently high temperature results but it yields the correct qualitative behavior.
Ji_.i+1 may be approximated by a discrete drift-diffusion The special nature of the emitter and collector layers is
law J@. ., =nu(F)/1 —D(F;) (nis1—n;)/I222 The SL pe-  considered in the boundary conditions, given by &jwith
riod is| and the electron drift velocity(F) and the diffusion 1=0 andi=N and different constitutive relations for the
coefficientD(F;) have the forms depicted in Fig. 1. In our tunneling currents:
numerical calculations, we have used parameters correspond- )
ing to the 9/4 SL of Ref. 7 at a temperature of 5 K. The three Jo1=iV(Fy) - W (Fo) +J0 @)
first subbands have energies of 44, 180, and 410 meV, re- 0-1=le (Fo [ 0=1
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FIG. 2. Current—field contact characteristics corresponding to P=— E
the 9/4 GaAs/AlAs SL of Ref. 7. N =
(f)
naw(Fy)
JNHN+l:|—+‘J§\lr)HN+l' 9
Here we still haveJ{". . ,)=0 fori=0 andi =N, while the
correlations are
iDF)l+nw®)(Fo)
(I 10 41 =" T ),
(10)
()
o WY (Fy) ,
O (OIL 1 (t)) = = 8(t=t"). (1D

The emitter current densﬂgj(f) the emitter backward ve-
locity w®, and the collector forward velocity'" are func-
tions of the electric field depicted in Fig.'2

In addition to the boundary conditions, the Am@eand
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dE;

J(t)— +nU| Di(niy1—ny)
+a\/ni(vi+Di)+Dini+1§i(t): (14
dEg

J(t)— +Je(Eo) We(Eg)ny
+ a\/Je( Eo) + We(Eg)ny &o(1), (15

dE
3= +We(Ennn+aVWe(En) iy én(D), (16

(17)

Here we have used the same symbols for dimensional and
dimensionless quantities except for the electric field and the
coefficient functions in the boundary conditions. The param-
eters v=eNj/(eFy)~1.772, ¢=VI(FyNI), and a

= Jel(eFyA)~3.232<x 10 * are the dimensionless doping,
the average electric fielthiag, and the noise amplitude, re-
spectively.&(t) is a zero-mean Gaussian white noise with
correlation (&(t)&;(t'))=6;8(t—t") [&(t)=&(tm)/ VAL,
where the &(t,,) are independent identically distributed
(i.i.d.) normalized Gaussian random variables for each dis-
crete timet,, andAt is the dimensionless time sfefhe rest

of the coefficients in Eq913)—(16) are defined by

Poisson equations should be supplemented with the voltage

bias condition

12

2 =V

where V denotes voltage. Equatiori4), (3), and (4)—(12)
form a closed system of stochastic equationsnfqrF; , and

J. They constitute the stochastic DDD model. To analyze this

model, it is convenient to render all equations dimensionless.
Let us denote byK,, ,vy) the coordinates of the first posi-

tive maximum of the drift velocity (F). We adopfy, , NJ ,
vms vml, eNJon /I, andeFyl/(eNjvy) as units ofF;, n;,

v(F), D(F), eJ, andt, respectively. According to the pa-
rameters of the superlattice previously referred to, we find

Fu=11.60 kV/cm,
=718 cm/s, vy!=9.33x10"*

Npy=1.5x10" cm2,
cn/s,

Um
and eNjvy/I

FuEi
vizv<Ei>=%.
D(FyE;

DiED<Ei):—(V:I S

i (H)

O(FuE)!
Je(Eg)=——,
o(Eo) =~

WO(FE
We<Eo>=1—MM°),

WO (FyE
We(Ey) = % (19

=13.27 Alcnf. For a circular sample with a diameter of The previous system of equations can be further simplified
120 um, the units of current and time are 1.501 mA andSlnce the electron denSltleﬁ and the total current denSlty

1.021 ns, respectively. Then Eq4), (3), and(4)—(12) be-
come
Ei—E_1=

=y(n,—1), (13

J(t) can be expressed in terms of the electric field and the
bias. Differentiating Eq(17) with respect to time and using
Egs. (15 and (16), we obtain an expression for the total
current densityd(t):
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d¢ 1 X dE 1 Nt
¢ 2 (T N & [ni(vi+D;j)—n;;1D;]
nW(Ey) @
NT(N N 2 i+ (ni+n;11)D; &(1)
a
- N\/nNWc(EN) En(t).
Then the total current can be written as
J=J,+J5-&, (19
d¢> < Ni(vi+D)—Ni+1D;  NyW,(Ey)
2 N TN
(20
(J2)0=0, (21)
(Jz)i:a \/niUi+(:li+ni+1)Di, 1<i<N, (22
(Jz)N:%\NC(EN), (23
E=(&(b), .. &) (24)
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FIG. 4. Part of the first plateau of tHeV characteristics.

Heun schemémodified Euler schemend the second-order
scheme proposed by Plat¥iThe second numerical scheme

is rather more costly, but we had to use it to avoid that
numerical errors mask the effects due to charge fluctuations.
Technical details on numerical schemes and a comparison of
their performances are given in the Appendix. The results of
our simulations are reported in the next section.

We can now insert these equations into the ArepEgs.

(14)—(16) and eliminaten; by using Eq(13), thereby obtain-
ing a stochastic differential equation of the following form:

dE—H(Ed¢ S(E)- &(t 25
g gt TS(B)-& )s (25
for the (N+1)-dimensional vector electric fieldE
=(Eq, ...,En)". Here S(E) is a (N+1)x (N+1) matrix

IIl. NUMERICAL RESULTS

We have numerically investigated the sample of Ref. 7
that was used in the relocation experimetitst consists of a
N=40 period SL with 9-nm-wide GaAs wells and 4-nm-
wide AlAs barriers, and 2D dopinyy=1.5x 10'* cm™2, at
atemperaturd =5 K. We have solved numerically the non-
dimensional equations in the units and dimensionless param-

andH is a (N+ 1)-dimensional vector having obvious forms eters introduced in Sec. II.

which we do not write explicitly for the sake of conciseness.
The stochastic differential equati@®5) has been numeri-
cally solved by using two different methods: a first order

10
W—H—O—Q—Hm
O \\
c /
S 7
<
o
T 4
@
[T
O
=
O 1
@ oo o
i ,
) ‘
0 10 30 40

20
SL pediod

FIG. 3. Static electric field profile af=2.1 V.

Figures 3 and 4 show a typical static electric field profile

1.65

—_—

Current (mA

1.40

20 80 80 100
Time (ns)

0 20

FIG. 5. Time trace of the current when the voltage is switched
from V,=0.65 V toV;=0.737 V.
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FIG. 8. (a) Mean relocation time for different final voltage®)
Logarithm of the mean delay time vs current difference between
final current and the maximum or minimum curréptof the initial
branch.

FIG. 6. As in Fig. 5, but with a final voltag€;=0.75 V.

(with two coexisting domainsand the first plateau of the
time-averaged -V characteristic§obtained by voltage up-
sweeping. To ascertain the influence of charge fluctuations
in domain relocation, we start by setting a stationary field
configuration corresponding to a voltagg=0.65 V on the

relocation has ended. The distribution of time delgytken
over many realizations is then recorded. For a large voltage
; T X switch, the time delay before the current falls from its initial
lower branch of Fig. 4. At im@=0, the voltage increases value to its final level is shorter than for a smaller voltage

(in one time stepto its final valueVy on the next -V branch. switch; compare Figs. 5 and 6. The differences between the

Time traces of the current are depicted in Figs. 5-7. No—time delays involved in these two casésout 40 ng are

tice that the vertical scale has been augmented sufficiently t

see the fluctuations of the current, which are typicall abou?rnaller than those recorded in experiméhEhese differ-
' ypically ences occur because of overestimation of the figldand

0.02 in size. To compare our numerical results to experimen-h h . litude b h ical calculati ith
tal ones, we need to characterize the domain relocation timet%e shot nor|]se amfp ;;[u € by purt eloretlca|1 calculations \.N't d
and their distribution function. After a voltage switch, eachr spect to those of the experimental sample, as we mentione

realization of the random solution of ER5) gives rise to before.

) . . S In Ref. 5 it was claimed that the time delay depends ex-
J;g;?éjsthlg i?riemtfsgecg;ﬁrg (?Sr(rjee(n?i:r:]tgi\l/zQggds&z.rvi\r/]ete?mﬁonemialIy on the difference between the final value of the

vals of five time dimensionless uniitéo the value of the stabilized current and the maximum value of the currgior

. . ; . mimimum value in the case of a down swijcit the initial
current in statid -V branches. The first timg, that the cur- I
rent time trace differs less thanx6L0~* dimensionless units

from its final stationary value, we consider that the domain o
1.55
<
=
= 5
g g
= S
— _
c o
o
5
@)
©
: R4
10 L . . | | 75 85 95 105 115
' 0 20 40 60 80 100 Time (ns)
Time (ns)
FIG. 9. Time delay distribution fov;=0.737 V. Data from
FIG. 7. As in Fig. 5, but with a final voltag¥;=0.755 V. numerical simulations have been fitted to a FPT distribution.
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X ' TABLE Il. Descriptive statistics of the relocation time distribu-
tions obtained with the Platen scheme.

Platen V;=0.737 V;=0.75

Lower limit (n9 77.827 43.942
=2 Upper limit (n) 115.025 44.960
7_56 Mean (ns) 87.635 44.541
_8 Standard deviatiofin9 6.339 0.167
a Skewness coeff. 1.4237 —-0.2791

data in Refs. 9 and 5. Quantitative differences are due to the
above-mentioned discrepanciedHp , the tunneling current,
and the shot noise amplitude. Now we focus on the distribu-
tion of switching times. Typically, delay distributions are ei-
ther close to symmetric Gaussians or they are asymmetric,
depending on how fa¥; is from the limit point of thel-V

FIG. 10. Time delay distribution fok;=0.75 V. Data from Characteristics. We have fitted our numerical distributions by

numerical simulations have been fitted to a Gaussian distribution.|€ast squares either to a Gaussian density:

437 T 44.2 447 45.2 457
Time (ns)

branch,l,. Then the relocation timémeasured in units of 1 (t—7)2
1.021 ng depends exponentially on the current differehce W(t, 7,0)= U\/Eexp( T o2 ) (27)
—lp, ie.,
ol 1] or to a first passage tim@PT) distribution
m
ex;{ » +c|. (26) ) 25 By22>
W(t,y,B)dt=\/y —ex 5 dz (28

We have observed this dependence in our numerical results m
too. The dimensionless constabtandc areb=64.9866 and  \yhere
c=1.6717. Herd;=1.501 mA is the unit of current. In the
experiments of Luet al.® | ;=136 uA (approximately the 1
height of the first maximum of the current in the inset of Fig. 7= (29
1), b=10.74(6 times smaller than the numerically calculated vexp2pt)—1

value), andc=3.34(2 times larger than the numerically cal- o .
culated valug We thus confirm the exponential dependenceThe parameters of these distributions arémean relocation

of the relocation time on the current difference and observe ame) ando (stapdqrd Qewatlo)nfor the Gaussmp gnyl and
good qualitative agreement between numerically and experi@_ for the F.PT distribution. The results of our fitting are de-
mentally obtained values. picted in Figs. 9 and 10.

Figure 8a) shows the mean relocation time obtained in
our simulations as a function of;. As the final voltage
approaches that correspondingl tp, the relocation time in- o
creases. Figure(B) depicts the mean relocation time as a
function of (I —1,,) on a semilogarithmic scale fof; values
between 0.737 and 0.735 V. The solid line denotes a linear fit o
to the data points, which agrees with the exponential law
proposed by Luet al® These figures are qualitatively simi-
lar to the corresponding ones depicted from experimental

O
@

<
<4
<

o0
©

Probability

L . . . L <
TABLE |. Descriptive statistics of the relocation time distribu-
tions obtained with the Heun scheme. <

(4 4
»

L
o
- < *®
Lower limit (ns) 77.692 43.775 FoxeS OO 00
-

Upper limit (ng 128.048 45.633 75 » Qgg 1(‘)5 15
Mean (ns) 87.863 44.564 Time (ns)

Standard deviatiofins) 6.803 0.299

Skewness coeff. 1.840 0.131 FIG. 11. Time delay distribution fov;= 0.737 calculated with a

deterministic Heun scheme and random initial conditions.

Heun V;=0.737 V;=0.75
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TABLE IIl. Descriptive statistics of the relocation time distribu-
tions obtained with pertubed initial conditions.

V;=0.737 V;=0.75

Mean (ns) 88.916 44.579
Standard deviatioin9 1.773 0.045
Skewness coeff. 0.912 0.255

o8¢

8

Probability

- IV. CONCLUSIONS

We have studied how the shot noise due to charge quan-
tization affects the relocation time of electric field domains
after a suddent switch of the voltage. We find that the mean
relocation time depends exponentially on the difference be-
tween the value of the current at the final voltage and the

FIG. 12. Time delay distribution fov;=0.75 calculated with a  value of the current at the end of the branch corresponding to
deterministic Heun scheme and random initial conditions. the initial voltage. The distribution function of delay times
after a voltage switch changes from Gaussian to a FPT dis-

These results agree qualitatively with the experimentaFribUtion as the final voltage approaches the limit point of the
ones of Rogoziat al® As in Ref. 9, our Figs. 9 and 10 show stationaryl -V characteristics. These results are in qualitative

that for values of the voltage far away from the current jump2dreement with experiments.

the time delay distribution changes from an asymmetric FPT

distribution to a very narrow symmetric Gaussian distribu-

tion asV; departs from the voltage corresponding to the ACKNOWLEDGMENTS

current jump. These features have a numerical expression in

terms of descriptive statistics like the mean, the standard We thank Dr. Guillermo Carpintero for fruitful discus-
deviation, or the skewness coefficient as shown in the tablesions during the early stages of this work. We acknowledge
of the Appendix. The numerically calculated largest andfinancial support of the DGES Grant Nos. PB98-0142-
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APPENDIX: NUMERICAL SCHEME

<
bed
hd
©
<
3>
o

|§83 v °

4. 452 45.7

437 44.2 447
Time (ns)

N

This appendix is devoted to explain some technical details of the simulations. The Platen second-order scheme gives the
vector fieldE"*? at discrete time + At as the following function oE" at discrete time (Ref. 16:

1 deb de N+1 o o . N+l . .
E”+1=E”+§ H(Y,a)"‘H En'ﬁ At+Z Z {[S‘(MLHS'(MJ_)+2$J(E”)]AW'+ 72 [SUH)+9Uh)
j=1 r=1r#j
1 N+1 N+1
—29(EM]AW +7 j}_‘,l [S‘(ML)—SJ(ML)]{(AW")Z—AI}Jrr_Z#j [S(U,) =S (U ) HAWAW +V, 1.

Here S(-) is the jth column of S(-), U.=E" 1
+S(EMI{/At, andH andSare evaluated at P(Vj, j,=*AD=5,
N+1
Y=E"+H E”%—(ﬁ At+ > S(EMAW Vi, = TAL - Vi, = Vi
1 t j:1 1

) We have used a time step aft=10"* (in dimensionless
At+S(E) JAL. units) of the same order as the noise amplitadd@he values
, of the random variables/ and W have been generated
AW are independent Gaussian random variables diStnbUteﬂﬁrough a random number generator improved by using a
with zero mean and varianckt, whereas the/; ; are in-  seed selector depending on the computer clock and an algo-
dependent two point random variables that satisfy rithm which allows to avoid the sequential correlation usual

ML =E"+H

dé
n_7"
E’dt
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in this sort of generators. The Platen scheme is second- However, both schemes differ in their treatment of the noise:
order weakly convergent in the following sense. géE) be  the stochastic Heun method is weakly first order whereas the
any sufficiently smooth scalar functigwith 2(8+1) con-  Platen scheme is second order. The result obtained by using
tinuous derivatives pro\/ideﬂ is the order of the Scherj]e the Platen scheme exhibits less dispersion than that reached
Let us fix the time instant atcorresponding to discrete time DYy the Heun method, as shown in Tables I and II. An appro-
n. Then priate treatment of the noise term avoids the presence of
artificial numerical effects. The effects of the numerical per-
turbations can be illustrated as follows. Let us use the deter-
ministic Heun scheme with random initial conditions corre-
for any At e (0,6p), whereC and §, are positive constants. sponding to disturbances of the stationary field profile at
The Platen numerical scheme is certainly more complicatedoltageV, and suddenly switch to voltagé; . The domain

and costly than even a stochastic He(modified Eulef  relocation times have been measured and they give rise to
first-order scheme. We have had to use it to minimize thehe distributions of Figs. 11 and 12. We have compared the
effects of numerical noise coming from floating-point mean, standard deviation, and skewness coeffiéiefithese
arithmetic (even our high-precision 64-bit arithmetiand  distributions to those corresponding to the use of the stochas-
that inherent in interpolating our transport coefficients andic Heun and Platen schemes; see Tables |, II, and Ill. Notice
contact functions in the boundary conditions. In fact, in the-that the mean relocation times are similar, while the numeri-
absence of the noise, both the Heun and the Platen schemes viscosity contributes to scatter the results. The shot noise

[(9(EM)—(g(E))|=C(AD)?,

become the well-known deterministic Hedimproved Eu-
ler) scheme—that is, a second-order Runge-Kutta method:

At
Entlopng ?[H(En)-p H(E"+H(E"At)].

does not change the mean values given by the deterministic
model, but the dispersion measured by the standard deviation
increases due to numerical effect@rger in the Heun
schemé The use of a numerical scheme that reduces these
effects is then clearly justified.
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