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Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host
of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of
nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of
weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning
transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning
transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and is con-
firmed by numerical calculations.
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Phenomena in many different fields may be described bydereg(u) =V’ (u) presents a “cubic” nonlinearity, such that
means of spatially discrete systems: motion of dislocations ii\g(u) —F has three zerog)(F/A)<U,(F/A)<U3(F/A)
crystals[1], atoms adsorbed on a periodic substi@g ar- in a certain force intervalg’(U;(F/A))>0 for i=1,3,
rays of coupled diode resonatd3], weakly coupled semi- g’(U,(F/A))<0]. The fluctuating part of the force field is
conductor superlatticeSL) [4,5], sliding of charge density y¢&,, wherey=0 characterizes the disorder strength &pd
waves(CDW) [6], superconductor Josephson array junctionss a zero mean random variable taking values on an interval
[7]. propagation of nerve impulses along myelinated fiberg—1,1) with equal probability. An example of a model de-
[8,9], pulse propagation through cardiac cel¥, calcium  scribed by Eq(1) is (except for the mean-field approxima-
release waves in living cells0], etc. In many of these sys- {jon, which we do not makeFisher's modification of the
f[e(rjns_,dthel olllsorder (_Jlu_e to dlffer(;nces in .thhe parameters qfukuyama—Lee model of sliding CDWA2]. In it, u,= 6,
i) lements i mporiant because 1o 2 S1019 My, o(u)—sinu 76y~ xp.~2+ o1, WHETED, s
lective behavior in discrete systerrsot shared by continu- CDW phase at the site and x, is a random variable taking

y y values with equal probability on (0z3).

ous onep is the phenomenon of wave front pinning: for Providedg(u) is odd with respect tdJ,(0) and y=0,

values of a control parameter in a certain interval, waveh . . _ h h f
fronts joining two different constant states fail to propagatell€'® is & symmetric intervaF|<F where the wave fronts
ining the stable zerob);(F/A) and U3(F/A) are pinned.

[9]. When the control parameter surpasses a threshold, tH ;
wave front depins and starts moviiig]. The existence of FOf |[F[>Fc, there aresmooth traveling wave frontsiy(t)
such thresholds is an intrinsically discrete fact, which is lost=U(n=Cct), with u(—e)=U, andu(=)=Us. The velocity

in continuum aproximations. Recently, a theory of front de-C(A,F) depl(/aznds orA andF and it satisfiecF<0 and|c]|
pinning and motion near threshold has been proposed by tw(IF|—Fc)™ as |[F|—F; [11]. Examples are the over-
of us for one-dimensional nonlinear spatially discreted@mped Frenkel-Kontorova modeysinu) [13] and the
reaction-diffusion systemBL1]. In our theory, propagation auartic double-well potentia] V=(u?—1)?/4]. Less sym-
failure and front depinning are characterized by studying thén€tric nonlinearities yield a nonsymmetric pinning interval
behavior of a few sites, provided the effects of spatial dis2nd our analysis of the depinning transition applies to them
cretization are sufficiently strond,11]. with trivial modifications[5]. _ _

In this paper, we consider the effect of weak disorder on L€t us recall the main features of the active point theory
the wave front depinning transition in spatially discrete 1DOf the wave front depinning transition in the absence of dis-
systems. Applications will include discrete RD systems suborder [11,5]. Except whenA is too small(the continuum
ject to a random field, sliding CDW and domain motion in limit in which F.—0), the stable wave front profile differs
SL. In these examples, the main effect of disorder is to softe@Ppreciably from eithed; or U; at finitely many pointsu, ,

the transition, changing the critical exponent from 1/2 to 3/2h=-L,...,—1,0,1 ... M, called theactive points At n
The latter value was obtained by Fisher in a mean-field< —L, uny=U;(F/A) and atn>M, u,~U5(F/A). We shall
model of sliding CDW using scaling argumerif<?]. reconstruct the wave front profilg(n—ct) by analyzing the

We consider chains of diffusively coupled overdampedbehavior of the active pointsu,(t), n=-L,...,
oscillators in a potential/, subject to a random force field —1,0,1...,M, as the front moves foF >F.>0 (the case

F+yé, F<O0 can be obtained by using symmetry considerajions
The arbitrary phase of th@ranslation invariantwave front
du, will be fixed by imposing that the solution of the system of

=Upr1—2Up+ U, FF—AQ(Uy) + ¥E,. (1)

dt active points at time=0 (andF slightly larger tharF ;) be
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FIG. 1. (a) Average velocity|c| as a function of for A= 10, F,=6.102 281, and/=0.1. (b) Graph of Iric|/In F showing the crossover
to the critical exponent 3/2.

equal to its stationary solution & =F., u,(A,F.), n  and the matching condition is the same as before. The solu-
=—L,...,M up to terms of orderg—F_). F is obtained tion of Eq.(2) blows up at the end of time intervals of du-
from the condition that the matrix of the coefficients in the ration 1fcg|, where

system of active points linearized about che stationar); solu- L y
tion has a zero eigenvalue. Provid®y (V< +---+Vy __\/ B

=1) is the corresponding eigenvector, an outer approxima- ] aB(F—Fe)+ 7'8,1:2_L VRinéren  (3)

tion to the solutionu,(t) is u,(t)~u,(A,Fo)+o(t)V,,

where the amplitude ¢ obeys the equationd<p/dt prpvided the grgument of the square root is pos@tive. Other-
= a(F—FJ)+ B¢, in which a=3M v, ~Wwise the motion of the wave front stops and it becomes

LAY E JA))+V , E JA))]> pinned. Notice that we have chosen nop(t) as the central
== (A[IZ)EL/g (l;'}((u E,/A\ I):) ))V5”>/% (UTSh(e Cs/ol)u)t]iono ,of tﬁis active point that was distinguished with the subscript zero in
- i=—L i e i .

. our previous formulas. After the blow upjg jumps to
equation  such that ¢(0)=0 [equwalgnt to un(0) ur.1(A,F.), approximately, and it remains there until a time
=U(AFg)  for _n=-L,...M] is e=[a(F 1/|cr+ 1| has elapsed. Then it jumps i, »(A,F.) approxi-
Fo)/B]1Y?tar JaB(F—F)t]. The amplitudey blows up mately, and so on.
attimest=*ty, t,= w/[2VaB(F—F.)]. The inverse width The magnitude of interest in these systems is usually an
of this time interval yields an approximation for the wave average velocitycg| over sufficiently many points. For ex-
front velocity, |c|~ VaB(F—F.)/m. At the blow-up times, ample, this magnitude is proportional to the current due to a
the previous outer approximation tg(t) has to be matched sliding CDW and it is important to know its behavior near
to an appropriate inner solution. At the later blow-up tigge  the depinning field and the magnitude thereof. We shall argue
the appropriate inner solution is the solution of the activethat the average velocity is approximately given by the fol-
point system at-=F_ with the boundary conditions that lowing equation:
up,=uy(A,F.) ast— —o andu,=u,,1(A,F.) ast—oo. At N
the earlier blow-up time-t,, the inner solution obeys the —_ 1 z .
same system of equations Rt F ., but the boundary con- = N & |crl =(lea(£)]), (4)
ditions areu,=u,_1(A,F;) ast— —o andu,=u,(A,F;) as
t—oo [14]. 1 (1

Effects of disorderHow does weak disorder modify this (ler(O))= z—f {aB(F—Fo)+yBoé&t?de.  (5)
. . . . I m) -1
picture of the wave front depinning transition? Our main idea

is to find a dominant balance of the disorder effects with S . - B 12
nonlinearities and K—F.) near the depinning transition. HereN>(L+M+1) is sufficiently largeo=1, and{x}

Given our active point construction sketched above, the® s Vx if x>0 and zero otherwise. The idea of the proof is as

dominant balance is struck provide& {F.)=0(y) asy t(r)]IIows Lelt us assutme thaﬁt;s_?f? Iart%e thaLt I'\f ?tﬁnd
_.0. The amplitude equation becomes ere is only one active poin en the central limit theorem

applied to Eq(3) with Vg=1 yields Eqs(4) and(5). Let us
assume now that there are two active points. The previous

q M argument fails because now the sum in E8). comprises
@ ; : ; .
5 =a(F-F)+7y 2 Vo &+ Be?, ) two terms instead of one. Then the terms in the arithmetic

mean are no longer independent: wheg=u, for instance,
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FIG. 2. Dimensionless average wave front velocity for the 9/4¢rrent over the time interval between maxima thereof. The
SL with dimensionless parameters-3, J,=0.179203,y=0.01.  4yerage velocity is basically the mean velocity at which the
) . wave front traversebl wells. To calculate it, we take advan-
Eq. (3) contains{; and &,. After the blow-up timelur=U,  (age of our theory of wave front motion in current biased SL
and Eq.(3) containsé, and¢s, etc. However, we can group (5] The equations we use are those in RBf.except that the
the sums appearing in the arithmetic average of @y.in dimensionless Poisson equation is nByw-E; ;= v(n;— 1
two groups containing .only independent randpm variables;_ y&) where y and ¢ defined as in Eq(1) represent the
R=2r—1 andR=2r, withr=1,2,... . Thevarlablevlg% disorder in well doping. In the SL equations, the roles of the
Vot r21as zero mean and correlationr23, where o force F and the parameteh are taken by the total current
=Vi+V5=1. This correlation is exactly the same as that OfdensityJ and the dimensionless doping If y=0 and»
the variable¢,. Then the central limit theorem applied to syrpasses a certain minimal value, there are two critical val-
each grougof sums of “dimer” random variabléggives one  yes of the current]; andJ,, such that a wave front is pinned
half the integral in Eq(5), and the sum of these two halves jt J,;<J<J, and it moves at a constant velocityJ,») oth-
yields Eq.(4). If we have more active points, we just have t0 gpise. The velocityc is positive if J<J; and negative if)
s_ubdivi_de the arithmetic mean in as many subgroups as a6s 3, Furthermore, near the critical currents|ec|d—J|2
tive points and use the previous argument to prove(Br. (3 is eitherd; or J,) [5]. How does the disorder correct this
The elementary integral in E@5) yieldsc=0 if F<F.  picture? The effect of disorder is to add a term

—vyola (recall thato=1), YD(Ej)&j+1— v[v(E;) +D(E;)]¢; to the total current den-
. sity J in the dimensionless discrete Anpeequation. Then
a FoF )+ i IF—F < Yo the theory in Ref[5] yields an equation similar to E¢B) for
— Bo a( )ty it ol = a the front velocity
|c|= 37y N 1 32 |, 312 -
—(F=Fy)+y| —|=(F=Fo—7v , 1
‘o STV et Y ledl ==\ aB3=30) =8 2 UL, Wain  (7)
(6) m L
if (F—F¢)>yala. Clearly we have a new critical fielf* Wrin=(Wr+ntDrin)érin—Drinérint1- (8

=F.— vola, and a new critical exponent 3(lhstead of 1/2 U ) )
Here, (i) Ug, , is the left eigenvector corresponding to the

for the case without disord)er|€|o<(F—F§)3’2. We have zero eigenvalue of the linearized equations about the station-
compared our theory with the direct numerical solution of gen 9
ary solution at J=J. (chosen in such a way that

Eqg. (1) in Fig. 1, obtaining an excellent agreement of theo- . . : -

re(zic(al) predigtions and nu?nerical simulaticg)]n. Ef';A?L_UJF(HnUR*n:l; Ug+n is the _r,',ght elgenvect())r'(u)
Similarly, we can analyze the effect of weak disorder inWe defin€vg, n=v(Eg.y), etc., andiii) « and are given

the doping of the wells on the motion of wave fronts in dcPY EAs-(20) and(21) in Ref. [5]. The valueg. , are those

current biased semiconductor SL. If the total current densitP the stationary electric field profile flz‘]c- The noise

is close to a pinning value, the displacement current is almod€'M in Eq.(8) can be written asi[Ug, ;(vr+n+ Dren)

zero except at certain times during wave front motion at~Ugsn—1Dren—1]érsn. Provided we takaJf, ,=0 for n

which the wave front jumps from one well to the adjacent<—L andn>M+1. The noise term has zero average and a

one. The average velocity given by Hd) is proportional to ~ correlation  2:2/3, with  o?=3[UL., (vrsn+Dgrin)

the arithmetic mean of time averages of the displacement UJFan_lDRM_l]z. Using the previously mentioned argu-
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ment of splitting the arithmetic mean in groups of indepen-the pinning interval and it changes the critical exponent for
dent random variables, we can show that E@$.and (5)  the velocity from 1/2 to 3/2. Whether these features are ro-
hold provideds in Eq. (5) is given by the previous formula bust and hold for strong disorder remains to be seen. An
and (F—F,) is replaced by J—J.). Comparisons of the interesting indication is that the critical exponent 3/2 is ob-
resulting average front velocity with the results of numeri- ?gﬁgslggiﬁg{r‘]degtg\/\ﬁfzime noise strength in mean-field
cally solving the SL model are shown in Figs. 2 and 3 for 9 '
currents close td; andJ,, respectively. This work was supported by the Spanish DGES vide
In conclusion, we have shown that weak disorder changeSrant No. PB98-0142-C04-01 and by the Third Regional
qualitatively the wave front depinning transition in over- Research Program of the Autonomous Region of Madrid
damped one-dimensional discrete models. Disorder shrink&trategic Groups Action
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