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Effects of disorder on the wave front depinning transition in spatially discrete systems
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Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host
of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of
nonlinear oscillators with nearest-neighbor coupling and subject to random external forces. The presence of
weak randomness shrinks the pinning interval and it changes the critical exponent of the wave front depinning
transition from 1/2 to 3/2. This effect is derived by means of a recent asymptotic theory of the depinning
transition, extended to discrete drift-diffusion models of transport in semiconductor superlattices and is con-
firmed by numerical calculations.
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Phenomena in many different fields may be described
means of spatially discrete systems: motion of dislocation
crystals@1#, atoms adsorbed on a periodic substrate@2#, ar-
rays of coupled diode resonators@3#, weakly coupled semi-
conductor superlattices~SL! @4,5#, sliding of charge density
waves~CDW! @6#, superconductor Josephson array junctio
@7#, propagation of nerve impulses along myelinated fib
@8,9#, pulse propagation through cardiac cells@9#, calcium
release waves in living cells@10#, etc. In many of these sys
tems, the disorder due to differences in the parameter
individual elements is important because it has a strong
pact on the collective behavior. A distinctive example of c
lective behavior in discrete systems~not shared by continu
ous ones! is the phenomenon of wave front pinning: fo
values of a control parameter in a certain interval, wa
fronts joining two different constant states fail to propag
@9#. When the control parameter surpasses a threshold
wave front depins and starts moving@8#. The existence of
such thresholds is an intrinsically discrete fact, which is l
in continuum aproximations. Recently, a theory of front d
pinning and motion near threshold has been proposed by
of us for one-dimensional nonlinear spatially discre
reaction-diffusion systems@11#. In our theory, propagation
failure and front depinning are characterized by studying
behavior of a few sites, provided the effects of spatial d
cretization are sufficiently strong@5,11#.

In this paper, we consider the effect of weak disorder
the wave front depinning transition in spatially discrete 1
systems. Applications will include discrete RD systems s
ject to a random field, sliding CDW and domain motion
SL. In these examples, the main effect of disorder is to so
the transition, changing the critical exponent from 1/2 to 3
The latter value was obtained by Fisher in a mean-fi
model of sliding CDW using scaling arguments@12#.

We consider chains of diffusively coupled overdamp
oscillators in a potentialV, subject to a random force fiel
F1gjn

dun

dt
5un1122un1un211F2Ag~un!1gjn . ~1!
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Hereg(u)5V8(u) presents a ‘‘cubic’’ nonlinearity, such tha
Ag(u)2F has three zeros,U1(F/A),U2(F/A),U3(F/A)
in a certain force interval@g8„Ui(F/A)….0 for i 51,3,
g8„U2(F/A)…,0#. The fluctuating part of the force field i
gjn , whereg>0 characterizes the disorder strength andjn
is a zero mean random variable taking values on an inte
(21,1) with equal probability. An example of a model d
scribed by Eq.~1! is ~except for the mean-field approxima
tion, which we do not make! Fisher’s modification of the
Fukuyama-Lee model of sliding CDW@12#. In it, un5un
2xn , g(u)5sinu, gjn5xn1122xn1xn21, whereun is the
CDW phase at the siten andxn is a random variable taking
values with equal probability on (0,2p).

Providedg(u) is odd with respect toU2(0) and g50,
there is a symmetric intervaluFu<Fc where the wave fronts
joining the stable zerosU1(F/A) and U3(F/A) are pinned.
For uFu.Fc , there aresmooth traveling wave fronts, un(t)
5u(n2ct), with u(2`)5U1 andu(`)5U3. The velocity
c(A,F) depends onA and F and it satisfiescF,0 and ucu
}(uFu2Fc)

1/2 as uFu→Fc @11#. Examples are the over
damped Frenkel-Kontorova model (g5sinu) @13# and the
quartic double-well potential@V5(u221)2/4#. Less sym-
metric nonlinearities yield a nonsymmetric pinning interv
and our analysis of the depinning transition applies to th
with trivial modifications@5#.

Let us recall the main features of the active point theo
of the wave front depinning transition in the absence of d
order @11,5#. Except whenA is too small ~the continuum
limit in which Fc→0), the stable wave front profile differ
appreciably from eitherU1 or U3 at finitely many points,un ,
n52L, . . . ,21,0,1, . . . ,M , called theactive points. At n
,2L, un'U1(F/A) and atn.M , un'U3(F/A). We shall
reconstruct the wave front profileu(n2ct) by analyzing the
behavior of the active pointsun(t), n52L, . . . ,
21,0,1, . . . ,M , as the front moves forF.Fc.0 ~the case
F,0 can be obtained by using symmetry consideration!.
The arbitrary phase of the~translation invariant! wave front
will be fixed by imposing that the solution of the system
active points at timet50 ~andF slightly larger thanFc) be
©2002 The American Physical Society07-1
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FIG. 1. ~a! Average velocityuc̄u as a function ofF for A510, Fc56.102 281, andg50.1. ~b! Graph of lnuc̄u/ln F showing the crossove
to the critical exponent 3/2.
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equal to its stationary solution atF5Fc , un(A,Fc), n
52L, . . . ,M up to terms of order (F2Fc). Fc is obtained
from the condition that the matrix of the coefficients in t
system of active points linearized about the stationary s
tion has a zero eigenvalue. ProvidedVn (V2L

2 1•••1VM
2

51) is the corresponding eigenvector, an outer approxim
tion to the solutionun(t) is un(t);un(A,Fc)1w(t)Vn ,
where the amplitude w obeys the equationdw/dt
5a(F2Fc)1bw2, in which a5( i 52L

M Vi

1A21@V2L /g8„U1(Fc /A)…1VM /g8„U3(Fc /A)…#.0, b
52(A/2)( i 52L

M g9„ui(A,Fc)…Vi
3.0. The solution of this

equation such that w(0)50 @equivalent to un(0)
5un(A,Fc) for n52L, . . . ,M # is w5@a(F
2Fc)/b#1/2 tan@Aab(F2Fc)t#. The amplitudew blows up
at timest56tb , tb5p/@2Aab(F2Fc)#. The inverse width
of this time interval yields an approximation for the wa
front velocity, ucu;Aab(F2Fc)/p. At the blow-up times,
the previous outer approximation toun(t) has to be matched
to an appropriate inner solution. At the later blow-up timetb ,
the appropriate inner solution is the solution of the act
point system atF5Fc with the boundary conditions tha
un5un(A,Fc) as t→2` andun5un11(A,Fc) as t→`. At
the earlier blow-up time2tb , the inner solution obeys th
same system of equations atF5Fc , but the boundary con
ditions areun5un21(A,Fc) ast→2` andun5un(A,Fc) as
t→` @14#.

Effects of disorder. How does weak disorder modify thi
picture of the wave front depinning transition? Our main id
is to find a dominant balance of the disorder effects w
nonlinearities and (F2Fc) near the depinning transition
Given our active point construction sketched above,
dominant balance is struck provided (F2Fc)5O(g) as g
→0. The amplitude equation becomes

dw

dt
5a~F2Fc!1g (

n52L

M

Vnjn1bw2, ~2!
03520
-
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and the matching condition is the same as before. The s
tion of Eq. ~2! blows up at the end of time intervals of du
ration 1/ucRu, where

ucRu5
1

p
Aab~F2Fc!1gb (

n52L

M

VR1njR1n, ~3!

provided the argument of the square root is positive. Oth
wise the motion of the wave front stops and it becom
pinned. Notice that we have chosen nowuR(t) as the central
active point that was distinguished with the subscript zero
our previous formulas. After the blow up,uR jumps to
uR11(A,Fc), approximately, and it remains there until a tim
1/ucR11u has elapsed. Then it jumps touR12(A,Fc) approxi-
mately, and so on.

The magnitude of interest in these systems is usually
average velocityucRu over sufficiently many points. For ex
ample, this magnitude is proportional to the current due t
sliding CDW and it is important to know its behavior ne
the depinning field and the magnitude thereof. We shall ar
that the average velocity is approximately given by the f
lowing equation:

uc̄u[
1

N (
R51

N

ucRu5^ucR~j!u&, ~4!

^ucR~j!u&[
1

2pE21

1

$ab~F2Fc!1gbsj%1
1/2dj. ~5!

Here N@(L1M11) is sufficiently large,s51, and$x%1
1/2

is Ax if x.0 and zero otherwise. The idea of the proof is
follows. Let us assume thatA is so large thatL5M50 and
there is only one active point. Then the central limit theore
applied to Eq.~3! with VR51 yields Eqs.~4! and~5!. Let us
assume now that there are two active points. The previ
argument fails because now the sum in Eq.~3! comprises
two terms instead of one. Then the terms in the arithme
mean are no longer independent: whenuR5u1 for instance,
7-2
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Eq. ~3! containsj1 and j2. After the blow-up time,uR5u2
and Eq.~3! containsj2 andj3, etc. However, we can grou
the sums appearing in the arithmetic average of Eq.~4! in
two groups containing only independent random variab
R52r 21 andR52r , with r 51,2, . . . . ThevariableV1j1
1V2j2 has zero mean and correlation 2s2/3, where s2

5V1
21V2

251. This correlation is exactly the same as that
the variablej1. Then the central limit theorem applied t
each group~of sums of ‘‘dimer’’ random variables! gives one
half the integral in Eq.~5!, and the sum of these two halve
yields Eq.~4!. If we have more active points, we just have
subdivide the arithmetic mean in as many subgroups as
tive points and use the previous argument to prove Eq.~4!.

The elementary integral in Eq.~5! yields c̄50 if F,Fc
2gs/a ~recall thats51),

uc̄u5
Abs

3pg
3H Uas ~F2Fc!1gU3/2

, if uF2Fcu<
gs

a

Uas ~F2Fc!1gU3/2

2Uas ~F2Fc!2gU3/2

,

~6!

if ( F2Fc).gs/a. Clearly we have a new critical fieldFc*
5Fc2gs/a, and a new critical exponent 3/2~instead of 1/2
for the case without disorder!, uc̄u}(F2Fc* )3/2. We have
compared our theory with the direct numerical solution
Eq. ~1! in Fig. 1, obtaining an excellent agreement of the
retical predictions and numerical simulation.

Similarly, we can analyze the effect of weak disorder
the doping of the wells on the motion of wave fronts in
current biased semiconductor SL. If the total current den
is close to a pinning value, the displacement current is alm
zero except at certain times during wave front motion
which the wave front jumps from one well to the adjace
one. The average velocity given by Eq.~4! is proportional to
the arithmetic mean of time averages of the displacem

FIG. 2. Dimensionless average wave front velocity for the
SL with dimensionless parametersn53, J150.179 203,g50.01.
03520
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current over the time interval between maxima thereof. T
average velocity is basically the mean velocity at which
wave front traversesN wells. To calculate it, we take advan
tage of our theory of wave front motion in current biased
@5#. The equations we use are those in Ref.@5# except that the
dimensionless Poisson equation is nowEi2Ei 215n(ni21
2gj i) where g and j defined as in Eq.~1! represent the
disorder in well doping. In the SL equations, the roles of t
force F and the parameterA are taken by the total curren
density J and the dimensionless dopingn. If g50 and n
surpasses a certain minimal value, there are two critical
ues of the current,J1 andJ2, such that a wave front is pinne
if J1<J<J2 and it moves at a constant velocityc(J,n) oth-
erwise. The velocityc is positive if J,J1 and negative ifJ
.J2. Furthermore, near the critical currents,ucu}uJ2Jcu1/2

(Jc is eitherJ1 or J2) @5#. How does the disorder correct th
picture? The effect of disorder is to add a ter
gD(Ej )j j 112g@v(Ej )1D(Ej )#j j to the total current den-
sity J in the dimensionless discrete Ampe`re equation. Then
the theory in Ref.@5# yields an equation similar to Eq.~3! for
the front velocity

ucRu5
1

p
Aab~J2Jc!2gb (

n52L

M

UR1n
† WR1n, ~7!

WR1n5~vR1n1DR1n!jR1n2DR1njR1n11 . ~8!

Here, ~i! UR1n
† is the left eigenvector corresponding to th

zero eigenvalue of the linearized equations about the stat
ary solution at J5Jc ~chosen in such a way tha
(n52L

M UR1n
† UR1n51; UR1n is the right eigenvector!, ~ii !

we definevR1n5v(ER1n), etc., and~iii ! a andb are given
by Eqs.~20! and~21! in Ref. @5#. The valuesER1n are those
of the stationary electric field profile atJ5Jc . The noise
term in Eq. ~8! can be written as(@UR1n

† (vR1n1DR1n)
2UR1n21

† DR1n21#jR1n , provided we takeUR1n
† 50 for n

,2L andn.M11. The noise term has zero average an
correlation 2s2/3, with s25(@UR1n

† (vR1n1DR1n)
2UR1n21

† DR1n21#2. Using the previously mentioned argu

FIG. 3. Same as Fig. 2 with parametersn540, J250.790 203,
g50.01.
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ment of splitting the arithmetic mean in groups of indepe
dent random variables, we can show that Eqs.~4! and ~5!
hold provideds in Eq. ~5! is given by the previous formula
and (F2Fc) is replaced by (J2Jc). Comparisons of the
resulting average front velocityc̄ with the results of numeri-
cally solving the SL model are shown in Figs. 2 and 3
currents close toJ1 andJ2, respectively.

In conclusion, we have shown that weak disorder chan
qualitatively the wave front depinning transition in ove
damped one-dimensional discrete models. Disorder shr
e,

uc
,

03520
-

r
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the pinning interval and it changes the critical exponent
the velocity from 1/2 to 3/2. Whether these features are
bust and hold for strong disorder remains to be seen.
interesting indication is that the critical exponent 3/2 is o
tained independently of the noise strength in mean-fi
models of sliding CDW@12#.
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