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Abstract – In a semiconductor superlattice with long scattering times, damping of Bloch
oscillations due to scattering is so small that convective nonlinearities may compensate it and
Bloch oscillations persist even in the hydrodynamic regime. In this case, numerical solutions show
that there are stable Bloch oscillations confined to a region near the collector with inhomogeneous
field, charge, current density and energy density profiles. These Bloch oscillations disappear when
damping due to inelastic collisions becomes sufficiently strong.

Copyright c© EPLA, 2011

Introduction. – Bloch oscillations (BOs) are coherent
oscillations of the position of electrons inside energy bands
of a crystal under an applied constant electric field −F .
Their frequency is ωB = eF l/� (l lattice constant), and
therefore it can be tuned by an applied voltage. BOs were
predicted by Zener in 1934 as an immediate consequence
of the Bloch theorem [1], but they were not observed for
almost sixty years because scattering of the electrons with
phonons, impurities, etc., damp them very rapidly into
oblivion. To observe BOs, their period has to be shorter
than the scattering time τ , and therefore the applied field
has to surpass the value �/(elτ), which is too large for
most natural materials, in which l is of ångström size. In
1970, Esaki and Tsu suggested to create an artificial crys-
tal, which they called superlattice (SL), by growing many
identical periods comprising a number of layers of two
different semiconductors with similar lattice constants [2].
The period of the resulting one-dimensional crystal may
be much larger, say about 10 nm, and this gives reason-
able electric fields of about 10 kV/cm, which are within
the range of experimental observation. Damped Bloch
oscillations were first observed in 1992 in semiconductor
SLs whose initial state was prepared optically [3]. Besides
their interest for theoretical physics, BOs have attracted
the attention of many physicists and engineers because of
their potential for designing infrared detectors, emitters
or lasers which can be tuned in the THz frequency range
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simply by varying the applied electric field [4]. However,
no electrically driven devices based on BOs have been
realized. Another application is based on the fact that
BOs give rise to a resonance peak in the absorption
coefficient under dc+ac bias and a positive gain at
THz frequencies [5]. The latter has been observed in
quantum cascade laser structures [6]. These applications
are severely limited by scattering which rapidly damps
BOs and, for a dc voltage biased SL, favors the formation
of electric-field domains (EFDs) whose dynamics yields
self-sustained oscillations of lower frequency (GHz) [7,8]
(a phenomenon similar to the Gunn effect in bulk
GaAs [9]). EFD formation may also preclude THz gain
in simple dc+ac driven SL which is typically calculated
assuming spatially uniform solutions of drift-diffusion–
or Boltzmann–type equations [4,10–14]. This assumption
has not been tested by solving space-dependent equations
with appropriate boundary conditions or by experiments
in semiconductor superlattices. An interesting idea for
efficient terahertz harmonics generation is to excite
relaxation oscillations in the superlattice by incident
radiation from a waveguide [15].
To understand the role of EFD formation in the

observation of BOs or THz Bloch gain, our starting
point should be a model in which BOs and EFDs are
both possible solutions of the governing equations. One
simple possibility is to use a self-consistent version of
the Ktitorov, Simin and Sindalovskii (KSS) Boltzmann
equation [5] with Bhatnagar-Gross-Krook (BGK) collision
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terms [16, 17]. The characteristic equations of this kinetic
equation exhibit BOs as solutions, whereas there exists a
hydrodynamic regime for large applied electric fields that
yields Gunn-type oscillations of the current as solutions
of a drift-diffusion equation [17]. However, the KSS model
does not have a hydrodynamic regime of the kinetic
equation in which both BOs and EFDs are possible
solutions. Why is the coexistence of BOs and EFDs not
possible in the KSS model? Firstly, the BOs and the
hydrodynamic regime correspond to widely separated
time scales. In the slower hydrodynamic regime, BOs
have already disappeared due to scattering and we cannot
study simultaneously BOs and the EFDs appearing in the
hydrodynamic regime. This problem could be reduced if
we consider materials with long-lived BOs corresponding
to almost elastic collisions, as will be discussed in more
detail later. The second problem is that, unlike the
original BGK local equilibrium [18], the local equilibria
used in [16] and in [17] depend only on the 2D electron
density n, which remains approximately constant during
a BO. Since hydrodynamic regimes are perturbations of
local equilibria, the KSS model as modified in [17] can
only provide slowly varying drift-diffusion equations1

for the electron density and the electric field −F that
cannot contain BOs among their solutions. This second
problem can be solved if the local equilibrium in the
Boltzmann-BGK kinetic theory depends on electron
density, electron current density and mean energy and the
collision term preserves charge but dissipates momentum
and energy [19]. The most important property of the
proposed model is that it allows the local equilibrium

distribution to oscillate at the Bloch frequency, which is
the crucial feature (missing in the KSS kinetic equation)
if we want to derive a hydrodynamic regime that allows
BOs.

Model. – The model equations are

∂tf + v(k) ∂xf + eF�
−1∂kf =Q[f ]≡−ν(f − f

B), (1)

ε ∂xF = el
−1(n−ND), (2)

fB(k;n, Jn, E) = n
π eũkl+β̃ cos kl

∫ π

0
eβ̃ cosK cosh(ũK) dK

, (3)

n=
l

2π

∫ π/l

−π/l

f(x, k, t)dk=
l

2π

∫ π/l

−π/l

fBdk. (4)

1To illustrate this with an example, let us consider the simple
one-dimensional problem ∂f/∂t+ v∂f/∂x+F∂f/∂v=−(f − fB)/δ
with fB = ne−v

2/2/
√
2π, n=

∫

∞

−∞
f(x, v, t) dv, as δ→ 0. Integration

over v gives the continuity equation ∂n/∂t+ ∂Jn/∂x= 0, with Jn =
∫

∞

−∞
vf(x, v, t) dv. An expansion f ∼ f (0)+ δf (1) gives f (0) = fB

and f (1) =−(v∂n/∂x+ ∂n/∂t−nFv)e−v2/2/
√
2π, which, inserted

in the continuity equation, produces the simple drift-diffusion equa-
tion for n: ∂n/∂t+ δF∂n/∂x= δ ∂2n/∂x2. To obtain not only a
continuity equation for n but also equations for the average momen-
tum and energy, we need a richer local equilibrium that depends on
n and also on the average momentum and energy. The original BGK
local equilibrium depended on space and time-dependent density,
average velocity and temperature [18].

Here n, ND, ε, −e < 0, m
∗, ν, and −F are the 2D

electron density, the 2D doping density, the permittivity,
the electron charge, the effective mass of the electron,
the constant collision frequency and the electric field,
respectively. v(k) =∆l sin(kl)/(2�) is the group velocity
corresponding to the miniband tight-binding dispersion
relation E(k) =∆(1− cos kl)/2. For the sake of simplicity,
we have assumed a Boltzmann local equilibrium (3), but it
is easy to replace it by the Fermi-Dirac local distribution
in the degenerate case. The distribution functions f and
fB have the same units as n and are 2π/l-periodic in k
(the function ũkl in (3) is extended periodically outside
−π < kl� π). A quantum version of (1) can be obtained
as indicated in ref. [8].
The dimensionless multipliers β̃(x, t) and ũ(x, t) depend

on Jn = e
∫ π/l

−π/l
v(k) f dk/(2π) (electron current density)

and on E = l
∫ π/l

−π/l
[∆/2−E(k)]fdk/(2πn) (mean energy).

They are found by solving

e

2π

∫ π/l

−π/l

v(k) fB dk= (1−αj)Jn,

l

2πn

∫ π/l

−π/l

(

∆

2
−E

)

fBdk= αeE0+(1−αe)E. (5)

Similarly to BGK collision models in rapid granular
flows [20], the restitution coefficients αj and αe take values
on the interval [0, 1] and measure the dissipation due
to collisions in current density and energy, respectively.

In fact, the collision operator satisfies
∫ π/l

−π/l
Q[f ] dk= 0

(charge continuity), e
∫ π/l

−π/l
v(k)Q[f ] dk/(2π) =−ναjJn,

and l
∫ π/l

−π/l
[∆/2−E(k)]Q[f ] dk/(2πn) =−ναe(E−E0).

Obviously for αe,j = 0 the collisions conserve energy and
momentum (elastic limit). To simplify matters, we shall
assume that αj and αe are constant. E0 is the mean
energy at the lattice temperature of the global equilibrium
which will be reached in the absence of bias and contact
with external reservoirs. Equivalent results are obtained if
we define the mean energy as the average of E(k), which
is equal to ∆/2−E, but eq. (5) leads to a simpler relation
between energy density and lattice temperature. At the
lattice temperature, T0 =∆/(2kB β̃0), ũ= 0, E =E0, and
(5) yields 2E0/∆= I1(β̃0)/I0(β̃0), where Is(x), s= 0, 1,
are modified Bessel functions.

Hydrodynamic equations. – In the hyperbolic limit
in which the collision and Bloch frequencies are compa-
rable and dominate all other terms in (1), it is possible
to derive closed equations for nondimensional n, F and A
(the complex envelope of the BO solution) [21],

f1 =A(x, t)e
−iθ + f1,S(x, t), θ=

1

δ

∫ t

0

F (x, s) ds (6)

(θ is the rapidly varying phase of the BO, f1,S =O(δ) is
written below), provided the collisions are almost elastic.
The small dimensionless parameter δ = e2NDl∆/(2ε�

2ν2)
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Table 1: Hyperbolic scaling and nondimensionalization with ν = 1014Hz.

f , n F E , E v(k) Jn x k t δ

ND
�ν
el

∆
2

l∆
2�

eND∆
2�

ε�ν
e2ND

1
l

2ε�2ν
e2NDl∆

e2NDl∆
2ε�2ν2

1010

cm2
kV
cm meV 104m

s
104A
cm2 nm 1

nm ps –

4.048 130 8 6.15 7.88 116 0.2 1.88 0.0053

is the ratio between the scattering time and the dielec-
tric relaxation time and the restitution coefficients are
assumed to scale with it, αe,j = δγe,j . A similar double
limit of vanishing Knudsen number (equivalent to δ→ 0)
and almost elastic collisions has been used to derive
hydrodynamic equations for granular gases [22]2. In (6),
fj(x, θ, t; δ) are the Fourier coefficients of f(x, k, t; δ) =
∑

∞

j=−∞ fje
ijk and f1 = nE− iJn. The nondimensional

equations are

∂F

∂t
+

δ

F 2+ δ2γjγe

[

γeE0nF +
F

2

∂

∂x
Im
f
B(0)
2,0

1+2iF

−
δγe
2

∂

∂x

(

n−Re
f
B(0)
2,0

1+2iF

)

−FRehS

+ δγeImhS

]

= J(t), (7)

∂F

∂x
= n− 1, (8)

∂A

∂t
=−
γe+ γj
2
A+

1

2i

∂

∂x

(

f
B(0)
2,−1

1+ iF

)

, (9)

hS =
f1,Su
n

∂Imf1,Su
∂x

+(J = Imf1,Su)
∂f1,Su
∂F

, (10)

f1,Su =
δγenE0(δγj − iF )

δ2γeγj +F 2
,

f1,S = nES − iJn,S =

δ

F 2+ δ2γjγe
[γenE0(δγj − iF )

−(δγj − iF )RehS − (F + iδγe)ImhS

+
F + iδγe
2

∂

∂x

(

n−Re
f
1Dα(0)
2,0

1+ i2F

)

+
δγj − iF

2
Im
∂

∂x

(

f
1Dα(0)
2,0

1+ i2F

)]

. (11)

We have defined the nondimensional variables f̃ = f/ND,
ñ= n/ND, Ẽ = 2E/∆, J̃n = J/[Jn], x̃= x/[x], . . . (where

2The case of granular gases is simpler: there, collisions dissipate
energy but conserve momentum and there is no electric field (and
therefore no Bloch oscillations).

[y] are the units in table 1) and omitted tildes over
variables. The dimensionless multipliers β̃ and ũ in fB

are functions of the rapidly varying BO phase θ due to
(6) and, therefore, we can expand fB in (3) in powers
of δ, fB ∼ fB(0)+ δfB(1). The fB(m) (m= 1, 2) are now
2π-periodic functions of θ and k. Then we have the
Fourier coefficients,

f
B(0)
j,m =

∫ π

−π

∫ π

−π

fB(0)(k;n, f1) e
−ijk−imθ dk dθ

(2π)2
, (12)

in which we set f1 =Ae
−iθ ignoring O(δ) terms in (6).

To derive (7)–(9), we start from the equations for the
moments fj which can be obtained from (1) by integration
over k [19]:

∂f0
∂t
− Im

∂f1
∂x
= 0, (13)

(

δ
∂

∂t
+ iF

)

f1 = δ

[

γef0E0−
γe+ γj
2
f1

−
γe− γj
2
f∗1 −

1

2i

∂

∂x
(f0− f2)

]

, (14)

where f0 = n, f1 = nE− iJn, and there are similar
equations for higher moments. From (13) and the Pois-
son equation ∂F/∂x= n− 1, we find Ampère’s law for
F : ∂F/∂t= J(t)−Jn, where J(t) is the total current
density. We shall assume that the second moment f2 is
a known function of f0 and f1, f2 = g(f0, f1). Then we
find equations for n, F and A in (6) by a method of
nonlinear multiple scales [23] with time scales θ and t. To
obtain the function g, we carry out a Chapman-Enskog
expansion [17,21] for (1) (in dimensionless units) with a
time derivative given by F ∂f/∂θ+ δ ∂f/∂t, according to
(6). The distribution function is supposed to be periodic
in k and in θ. This procedure gives approximate formulas
for g= f2 from which (7)–(9) are obtained [21].
The hydrodynamic equations (7)–(9) have the spatially

uniform solutions, n= 1, J = δγeE0nF/(δ
2γeγj +F

2) (in
dimensional units this gives the well-known temperature-
dependent drift velocity [16]3), and A=A0e

−(γe+γj)t/2.
Inserting the latter formula in (6), we see that this corre-
sponds to a damped BO whose amplitude relaxes to 0.

3In dimensional units, the drift velocity is vd(F ) = 2vMF/(1+
F2), where vM =∆lI1(β̃0)/(4�I0(β̃0)τ̃e), τ̃e =

√

αj/αe and F =
eF l/(�ναeτ̃e) = F/FM . vM and FM are the velocity and field at
the peak of vd(F ).
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Fig. 1: (Colour on-line) (a) Modulus of the BO complex
amplitude vs. space at times t1 = 7, t2 = 9, t3 = 11, t4 = 13.
(b) Stationary field profile. (c) Profiles of the nondimensional
mean energy density E and nondimensional electron current
density Jn for θ= 0. (d) Current density at the two different
points marked by (1) and (2) in (b) during BOs. Clearly, the
frequency at point (2) is larger than at (1). To transform the
magnitudes in this figure to dimensional units, use table 1.
[A] =ΔND/2.

Even when we manage to prepare the initial state with
a coherent BO of complex amplitude A0, ignoring space
dependence will lead to disappearance of the BOs after a
relaxation time 2/(γe+ γj). Stabilization of the BOs may
be caused only by the spatially dependent second term on
the right-hand side of (9).

Results. – We now solve numerically the hydro-
dynamic equations with the boundary conditions [8]

∂F

∂t
+σ0F

∣

∣

∣

∣

x=0

= J,
∂F

∂t
+σ1nF

∣

∣

∣

∣

x=L

= J, (15)

1

L

∫ L

0

F (x, t) dx= φ, (16)

∂A

∂x
= 0, at x= 0. (17)

We obtain similar numerical results with A= 0 at x= 0.
Here L=Nl/[x] and φ= eV/(�νN) are the dimension-
less SL length and average field (proportional to the
applied voltage V ), respectively. We have used contact
conductivities σ0,1 = 12.1 (Ωm)

−1 which yield dimension-
less conductivities σ0,1 = 0.2 (conductivity units are [σ] =
e2ND∆l/(2�

2ν)). Initially, F (x, 0) = φ and A(x, 0) =A0
(constant). The latter condition means that we have
prepared the SL in an initial state having a coherent BO
with complex amplitude A0. Whether this can be achieved
by optical means as in [3] remains to be seen.
We solve (7)–(9) with the parameter values indicated

in table 1 (which are similar to those in ref. [24]) and
different values of the restitution coefficients. We start
with αe = αj = 0.01 so that ναe = ναj = 10

12Hz (see
footnote4). The 3D doping density N3D = 8× 10

16 cm−3

gives ND =N3Dl= 4.048× 10
10 cm−2 as in table 1, and

ε= 12.85 ε0. We find δ≈ 0.0053 and γe,j = αe,j/δ = 1.8781.
We consider a 50-period (N = 50) dc voltage biased SL
with lattice temperature 300K. For V = 0.2V (therefore
φ= 0.06 (see footnote5), we observe that |A(x, t)| first
diminishes uniformly from A0 = 0.153 to almost zero after
a relaxation time 2/(γe+ γj)≈ 0.53 (about 1 ps). Later a
small pulse is formed at about x=L/4 which subsequently
extends to the remaining part of the sample and it grows
nearer to its end. The BOs are confined to the second half
of the sample that is closer to x=L and are zero in the

4Schomburg et al. calculated in ref. [24] the scattering frequencies
νe (inelastic, energy dissipating, scattering) and νp (elastic, momen-
tum dissipating, scattering) of the KSS collision terms by fitting (in
the appropriate units) the current-voltage characteristics of the SL
to the same drift velocity as mentioned in the previous footnote.
In particular, they fitted the peak velocity and field, vM and FM .
Acting similarly, we can calculate αe = νe/ν and αj = αe+ νp/ν.
From the values of νe and νp in ref. [24], we get αe = 0.09 and

αj = 0.29, which yields τ̃e =
√

29/9. αe = αj = 0.01 means that the
elastic scattering frequency is νp = 0 and the inelastic scattering
frequency is ναe = 1012 Hz.
5This is about 6 times the peak field in the drift velocity, FM =

�ν
√
αeαj/(el).
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first half of the sample closer to x= 0. Thus, the profile of
|A| has a compact support with a maximum near x=L.
|A(x, t)| is close to a periodic oscillation in time: small
pulses are formed at the left of its support, climb up
towards the maximum of the pulse which then dimin-
ishes and the same behavior repeats itself. Figure 1(a)
shows four snapshots of |A(x, t)| illustrating this
behavior which can also be observed in two movies6. The
field profile depicted in fig. 1(b) is almost stationary.
The mean energy and electron current densities during
one BO can be reconstructed by means of (6). We show
them for θ= 0 in fig. 1(c). At the two different SL
locations marked in fig. 1(b), the graphs of Jn vs. time are
shown in fig. 1(d). This figure and two additional movies
(BO Jn x.avi and BO 1-E x.avi) showing the evolution
of the Jn and 1−E profiles in the supplementary material
illustrate that the Bloch frequencies depend strongly on
space and are higher near the collector where the field is
larger.
For the scattering times reported in ref. [24], the

restitution coefficients are αe = 0.09 and αj = 0.29, but
the BO amplitude becomes zero everywhere after a short
relaxation time. BOs also disappear for αe = 0.01 and
αj = 0.29/9≈ 0.032, and there is a smaller critical value of
αj (for fixed αe) below which BOs can be sustained. They
also persist for αj = 0.01 and αe = 0.09/29 which keep the
same ratio αj/αe = 29/9≈ 3.22 as in ref. [24]. There is a
critical curve in the plane of restitution coefficients such
that, for (γe+ γj)/2> γcrit (γcrit ≈ 2.5 for δ= 0.0053),
BOs disappear after a relaxation time but they persist
for smaller values of (γe+ γj).
In summary, we have analyzed the Boltzmann-BGK-

Poisson equations with local equilibrium depending on
the electron density, current density and energy density
in the hyperbolic limit in which the BO period is much
shorter than the dielectric relaxation time and collisions
are almost elastic. In the long-time scale, there is a
hydrodynamic regime described by coupled equations for
the electric field, the electron density and the BO complex
amplitude. When the restitution coefficients (equivalently
the inverse of the scattering times) are sufficiently small
and the initial state has been prepared so that there
is a nonzero Bloch oscillation, there are stable spatially
inhomogeneous profiles of current and energy densities
displaying BOs confined to a fraction of the SL extent. It
remains to investigate whether confined Bloch oscillations
may also be important for terahertz harmonic generation
with underlying inhomogeneous charge and electric-field
profiles.
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6See the supplementary material (movies BO 1-E x.avi,
BO A1.avi, BO A2.avi and BO Jn x.avi) for |A|, Jn and 1−E.
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