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Abstract. Bloch oscillations are coherent oscillations of the position of electrons (and therefore also of the electric current)
inside energy bands of a crystal under an applied constant electric field. Their frequency is proportional to the lattice constant
and to the field and therefore can be tuned by an applied voltage. Damped Bloch oscillations have been observed by optical
means in undoped semiconductor superlattices which are artificial crystal structures formed by growing a succession of equal
periods comprising layers of at least two different semiconductors. We model Bloch oscillations in a doped superlattice by
using Boltzmann-Poisson equations and derive hydrodynamic equations for the electron, current and energy densities. For a
superlattice with long scattering times, we show that the damping of Bloch oscillations is so small that nonlinearities may
compensate it and provide stable oscillations of the current and energy densities. In this case, numerical solutions show that
there are stable Bloch oscillations spatially confined to part of the superlattice, thereby having inhomogeneous field, charge,
current density and energy density profiles. These Bloch oscillations disappear as scattering times become sufficiently short.

Keywords: Bloch oscillations, semiconductor superlattices, Boltzmann-BGK model, hydrodynamic limit and equations, waves, modulated
oscillations
PACS: 72.20.Ht, 73.63.-b, 05.45.-a

INTRODUCTION

Bloch oscillations (BOs) are coherent time periodic oscillations of the position of electrons inside energy bands of a
crystal under an applied constant electric field. They give rise to self-sustained oscillations of the current. Predicted by
Zener in 1934, they are an immediate consequence of the Bloch theorem [1]. Scattering damps BOs and they can be
experimentally observed in artificial periodic structures such as semiconductor superlattices (SLs), first proposed by
Esaki and Tsu [1]. Besides their interest for theoretical physics, BOs have attracted the attention of many physicists and
engineers because of their potential for designing infrared detectors, emitters or lasers which can be tuned in the THz
frequency range simply by varying the applied electric field [1]. Another application is based on the fact that BOs give
rise to a resonance peak in the absorption coefficient under dc+ac bias and a positive gain at THz frequencies [2, 3].
These applications are severely limited by scattering which rapidly damps BOs and, for a dc voltage biased SL, favors
the formation of electric field domains (EFDs) whose dynamics yields Gunn-type self-sustained oscillations of lower
frequency (GHz) [4, 5]. Recently, we have proposed a model that may contain both BOs and the slower Gunn-type
oscillations due to EFD dynamics [6, 7]. Electron transport in a doped SL is described by a self-consistent Boltzmann-
Poisson equation in which phonon scattering is modeled by a dissipative Bhatnagar-Gross-Krook (BGK) collision term
[6, 7]. The local equilibrium distribution depends on the electron, current and energy densities. Previous models could
describe Gunn-type oscillations but not stable BOs because their local distribution was a function of electron density
only [5], and they could not describe BOs except as short transient stages (the electron density remains approximately
constant during a BO). The model equations are

∂t f + v(k)∂x f + eFh̄−1∂k f = Q[ f ]≡−ν( f − f B), (1)

ε ∂xF = el−1(n−ND), (2)

f B(k;n,Jn,E) = n
π eũkl+β̃ coskl

∫ π
0 eβ̃ cosK cosh(ũK)dK

, (3)

n =
l

2π

∫ π/l

−π/l
f (x,k, t)dk =

l
2π

∫ π/l

−π/l
f Bdk. (4)
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Here n, ND, ε , −e < 0, m∗, ν , and −F are the 2D electron density, the 2D doping density, the permittivity, the
electron charge, the effective mass of the electron, the constant collision frequency and the electric field, respectively.
v(k) = Δl sin(kl)/(2h̄) is the group velocity corresponding to the miniband tight binding dispersion relation E (k) =
Δ(1−coskl)/2. For the sake of simplicity, we have assumed a Boltzmann local equilibrium (3), but it is easy to replace
it by the Fermi-Dirac local distribution in the degenerate case. The distribution functions f and f B have the same units
as n and are 2π/l-periodic in k (the function ũkl in (3) is extended periodically outside −π < kl ≤ π). A quantum
version of (1) can be obtained as indicated in Ref. [5].

The dimensionless multipliers β̃ (x, t) and ũ(x, t) depend on Jn=e
∫ π/l
−π/l v(k) f dk/(2π) (electron current density)

and on E=l
∫ π/l
−π/l [Δ/2−E (k)] f dk/(2πn) (mean energy). They are found by solving e

2π

∫ π/l
−π/l v(k) f B dk = (1−α j)Jn,

and l
2πn

∫ π/l
−π/l

(
Δ
2 −E

)
f Bdk = αeE0 +(1−αe)E. αe and α j are constant restitution coefficients that take on values

on the interval [0,1] and measure the dissipation due to collisions in current density and energy, respectively. In

fact, the collision operator satisfies
∫ π/l
−π/l Q[ f ]dk = 0 (charge continuity), e

∫ π/l
−π/l v(k)Q[ f ]dk/(2π) = −να jJn, and

l
∫ π/l
−π/l [Δ/2− E (k)]Q[ f ]dk/(2πn) = −ναe(E − E0). Obviously for αe, j = 0 the collisions conserve energy and

momentum (elastic limit). E0 is the mean energy at the lattice temperature of the global equilibrium which will be
reached in the absence of bias and contact with external reservoirs.

HYDRODYNAMIC EQUATIONS

In the hyperbolic limit in which the collision and Bloch frequencies are comparable and dominate all other terms in
(1), it is possible to derive closed equations of hydrodynamic type for the nondimensional variables n, F and A (the
complex envelope of the BO solution) [8], provided the collisions are almost elastic. For the BO solution, the first
harmonic of the distribution function is

f1 = nE− iJn = A(x, t)e−iθ + f1,S(x, t), θ =
1
δ

∫ t

0
F(x,s)ds (5)

where f (x,k, t;δ ) = ∑∞
j=−∞ f jei jk ( f is 2π-periodic in k), θ is the rapidly varying phase of the BO and f1,S = O(δ ) is

a slowly varying function; see below. The small dimensionless parameter δ = e2NDlΔ/(2ε h̄2ν2) is the ratio between
the scattering time and the dielectric relaxation time and the restitution coefficients are assumed to scale with it,
αe, j = δγe, j. The nondimensional hydrodynamic equations for n, F and A are

∂F
∂ t

+
δ

F2 +δ 2γ jγe

⎡
⎣γeE0nF +

F
2

∂

∂x
Im

f B(0)
2,0

1+2iF
−

δγe

2
∂

∂x

⎛
⎝n−Re

f B(0)
2,0

1+2iF

⎞
⎠−FRehS + δγeImhS] = J(t),(6)

∂F
∂x

= n−1, (7)

∂A
∂ t

= −
γe + γ j

2
A+

1
2i

∂

∂x

⎛
⎝ f B(0)

2,−1

1+ iF

⎞
⎠ , (8)

hS =
f1,Su

n
Im

∂ f1,Su

∂x
+(J+ Im f1,Su)

∂ f1,Su

∂F
, f1,Su =

δγenE0(δγ j− iF)

δ 2γeγ j +F2 , (9)

f1,S = nES− iJn,S =
δ

F2 +δ 2γ jγe
[γenE0(δγ j− iF) − (δγ j− iF)RehS− (F + iδγe)ImhS

+
F + iδγe

2
∂

∂x

⎛
⎝n−Re

f B(0)
2,0

1+ i2F

⎞
⎠+

δγ j− iF

2
Im

∂

∂x

⎛
⎝ f B(0)

2,0

1+ i2F

⎞
⎠
⎤
⎦ . (10)

We have defined the nondimensional variables f̃ = f/ND, ñ = n/ND, Ẽ = 2E/Δ, J̃n = J/[Jn], x̃ = x/[x], . . . (where
[y] are the units in Table 1) and omitted tildes over variables. The dimensionless multipliers β̃ and ũ in f B are
functions of the rapidly varying BO phase θ due to (5) and therefore, we can expand f B in (3) in powers of δ ,
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TABLE 1. Hyperbolic scaling and nondimensionalization with ν = 1014 Hz.

f , n F E , E v(k) Jn x k t δ

ND
h̄ν
el

Δ
2

lΔ
2h̄

eNDΔ
2h̄

ε h̄ν
e2ND

1
l

2ε h̄2ν
e2NDlΔ

e2NDlΔ
2ε h̄2ν2

1010

cm2
kV
cm meV 104m

s
104A
cm2 nm 1

nm ps –
4.048 130 8 6.15 7.88 116 0.2 1.88 0.0053

f B ∼ f B(0) + δ f B(1). The f B(m) (m = 1,2) are now 2π-periodic functions of θ and k. Then we have the Fourier

coefficients f B(0)
j,m =

∫ π
−π

∫ π
−π f B(0)(k;n, f1)e−i jk−imθ dk dθ

(2π)2 , in which we set f1 = Ae−iθ ignoring O(δ ) terms in (5).

To derive (6)-(8), we first obtain equations for f0 = n and f1 = nE− iJn by integrating (1) over k [6, 7]:

∂ f0

∂ t
− Im

∂ f1

∂x
= 0, (11)(

δ
∂

∂ t
+ iF

)
f1 = δ

[
γe f0E0−

γe + γ j

2
f1 −

γe− γ j

2
f ∗1 −

1
2i

∂

∂x
( f0− f2)

]
. (12)

From (11) and (7), we find an Ampère’s law for F : ∂F/∂ t = J(t)+ Im f1, where J(t) is the total current density. We
shall assume that the second moment f2 is a known function of f0 and f1, f2 = g( f0, f1). Then we separate the rapidly
and slowly varying parts of f1 according to (5) and find equations for n, F and A by a method of nonlinear multiple
scales with time scales θ and t. To find g, we carry out a Chapman-Enskog expansion [9, 8] for (1) (in dimensionless
units) with a time derivative given by F ∂ f/∂θ + δ ∂ f/∂ t, according to (5). The distribution function is supposed to
be periodic in k and in θ . This procedure gives approximate formulas for g = f2 from which (6)-(8) are obtained [8].

The hydrodynamic equations (6)-(8) have the spatially uniform solutions, n = 1, J = −Im f1,Su =

δγeE0nF/(δ 2γeγ j + F2) [5], and A = A0e−(γe+γ j)t/2. (5) shows that the latter formula corresponds to a damped
BO whose amplitude relaxes to 0. Even when we prepare the initial state with a coherent BO of complex amplitude
A0, ignoring space dependence will lead to disappearance of the BOs after a relaxation time 2/(γe + γ j). Stabilization
of the BOs may be caused only by the spatially dependent second term in the right hand side of (8).

NUMERICAL RESULTS

We now solve numerically the hydrodynamic equations with the boundary conditions [5]

∂F
∂ t

+σ0F

∣∣∣∣
x=0

= J,
∂F
∂ t

+σ1nF

∣∣∣∣
x=L

= J,
1
L

∫ L

0
F(x, t)dx = φ ,

∂A
∂x

∣∣∣∣
x=0

= 0. (13)

We obtain similar numerical results with A(0, t) = 0. Here L = Nl/[x] and φ = eV/(h̄νN) are dimensionless SL length
and average field (proportional to the applied voltage V ), respectively. We have used contact conductivities σ0,1 = 12.1
(Ωm)−1 which yield dimensionless conductivities σ0,1 = 0.2 (conductivity units are [σ ] = e2NDΔl/(2h̄2ν)). Initially,
F(x,0) = φ and A(x,0) = A0 (constant). The latter condition means that we have prepared the SL in an initial state
having a coherent BO with complex amplitude A0.

We solve (6)-(8) with the parameter values indicated in Table 1 (which are similar to those in Ref. [10]) and different
values of the restitution coefficients. We start with αe =α j = 0.01 so that ναe = να j = 1012 Hz. The 3D doping density
N3D = 8×1016 cm−3 gives ND = N3Dl = 4.048×1010 cm−2 as in Table 1, and ε = 12.85ε0. We find δ ≈ 0.0053 and
γe, j = αe, j/δ = 1.8781. We consider a 50-period (N = 50) dc voltage biased SL with lattice temperature 300 K.
For V = 0.2 V (therefore φ = 0.06), we observe that |A(x, t)| first diminishes uniformly from A0 = 0.153 to almost
zero after a relaxation time 2/(γe + γ j) ≈ 0.53 (about 1 ps). Later a small pulse is formed at about x = L/4 which
subsequently extends to the remaining part of the sample and it grows more near its end. The BOs are confined to the
second half of the sample that is closer to x = L and are zero in the first half of the sample closer to x = 0. Thus the
profile of |A| has a compact support with a maximum near x = L. |A(x, t)| is close to a periodic oscillation in time:
small pulses are formed at the left of its support, climb up towards the maximum of the pulse which then diminishes
and the same behavior repeats itself. Figure 1(a) shows four snapshots of |A(x, t)| illustrating this behavior. The field
profile depicted in Fig. 1(b) is almost stationary. The mean energy and electron current densities during one BO can
be reconstructed by means of (5). At the two different SL locations marked in Fig. 1(b), the graphs of Jn versus time
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FIGURE 1. (a) Modulus of the BO complex amplitude vs space at times t1 = 7, t2 = 9, t3 = 11, t4 = 13. (b) Stationary field
profile. (c) Current density at the two different points marked by (1) and (2) in (b) during BOs. Clearly, the frequency at point (2) is
larger than at (1).

are shown in Fig. 1(c). This figure illustrates that the Bloch frequencies depend strongly on space and are higher near
the collector where the field is larger.

For the scattering times reported in Ref. [10], the restitution coefficients are αe = 0.09 and α j = 0.29, but the BO
amplitude becomes zero everywhere after a short relaxation time. There is a critical curve in the plane of restitution
coefficients such that, for (γe+γ j)/2 > γcrit (γcrit ≈ 2.5 for δ = 0.0053), BOs disappear after a relaxation time but they
persist for smaller values of (γe + γ j).

SUMMARY

We have analyzed the Boltzmann-BGK-Poisson equations with local equilibrium depending on the electron density,
current density and energy density in the hyperbolic limit in which the BO period is much shorter than the dielectric
relaxation time and collisions are almost elastic. In the long-time scale, there is a hydrodynamic regime described
by coupled equations for the electric field, the electron density and the BO complex amplitude. When the restitution
coefficients (equivalently the inverse of the scattering times) are sufficiently small and the initial state has been prepared
so that there is a nonzero Bloch oscillation, there are stable spatially inhomogeneous profiles of current and energy
densities displaying BOs confined to a fraction of the SL extent. It would be interesting to investigate whether confined
Bloch oscillations may also be important for terahertz harmonic generation with underlying inhomogeneous charge
and electric field profiles.
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