A A

MNSIM
 >  Seminars
 >  Seminars 2018

Seminars 2018


Seminar

Thursday, February 1

Investigando el camino de desplegamiento de proteínas

Antonio Prados

Universidad de Sevilla

Abstract

En esta charla revisamos algunos resultados teóricos recientes que predicen el camino de desplegamiento de proteínas simples, como sistemas modulares, como función de la velocidad y la dirección de tracción. Estos resultados teóricos se obtienen a partir de una descripción mesoscópica, en que las extensiones de los distintos módulos que componen la proteína obedecen ecuaciones de evolución escolásticas (Langevin). Las predicciones de este enfoque teórico se comparan tanto con resultados experimentales como con simulaciones de Dinámica Molecular.

The seminar will take place at 13:00 in classroom 2.0.D14 (Edificio Sabatini) Universidad Carlos III


Seminar

Tuesday January 23

Estados termodinámicos en vidrios de espín en dimensión finita

Juan Jesús Ruiz-Lorenzo

Universidad de Extremadura

Abstract

En esta charla se abordarán de una manera sencilla los vidrios de espín en dimensión finita. Para ello describiremos la obtención del modelo de Edwards-Anderson a partir de primeros principios. Posteriormente detallaremos las propiedades físicas de las solución en el regimen de campo medio basada en la rotura de la simetria de las réplicas y teorías alternativas como el modelo de los droplets y la de los pares caóticos. A continuación estudiaremos los problemas que presenta el límite termodinámico en estos modelos (por ejemplo, la definición de estados) y el concepto de metaestado. Finalmente presentaré resultados recientes sobre la construcción numérica del metaestado y sus implicaciones sobre las diferentes teorías que pretenden describir los vidrios de espín en dimensión finita.

The seminar will take place at 13:00 in classroom 2.0.D14 (Edificio Sabatini) Universidad Carlos III


Seminar

Wednesday, January 17

Proliferation and Movement - Modelling Angiogenesis

Rui Travasso

University of Coimbra

Abstract

Angiogenesis - the growth of new blood vessels from a pre-existing vasculature - is key in both physiological processes and on several pathological scenarios such as cancer progression or diabetic retinopathy. In this seminar we will present different mathematical approaches to model sprouting angiogenesis. We will focus on the role of cell migration and cell proliferation in determining the morphology of the resulting network. We will present mathematical models that take into account the role of mechanics in regulating endothelial cell proliferation and migration. For the new vascular networks to be functional, it is required that the growing sprouts merge either with an existing functional mature vessel or with another growing sprout. This process is called anastomosis. We will present a systematic 2D and 3D study of vessel growth in a tissue to address the capability of angiogenic factor gradients to drive anastomose formation. We will demonstrate that the production of angiogenic factors by hypoxic cells is able to promote vessel anastomoses events in both 2D and 3D. We also verify that the morphology of these networks has an increased resilience toward variations in the endothelial cell's proliferation and chemotactic response.

The seminar will take place at 13:00 in classroom 2.0.D14 (Edificio Sabatini) Universidad Carlos III


Seminar

Wednesday, January 10

The dynamics of a thin vibrated granular layer (quasi-2D geometry)

Francisco Vega Reyes

Univerdidad de Extremadura

Abstract

We review the main features of the dynamics of a quasi-2D thin granular layer. The system consists in a densely packed set of identical spheres (metallic spheres with a diameter $\sim$ 1mm) that is conned in a vibrating box. The layer is horizontal and the shaking is performed vertically. The box has a width $h \in [1.25\sigma,1.9\sigma]$ so that the geometry forbids vertical particle overlapping. We consider only sine-shaped vibration signals, with amplitude $A$ and angular frequency $\omega$ so that the input acceleration is typically greater than gravitational acceleration: $\Gamma \equiv A\omega^2/g \gt 1$. As energy input is gradually increased the system undergoes over a series of phase transitions, including a quasi-2D hexatic-like phase that can be described in the context of the KTHNY theory [1,2,3]. The observed phase diagram changes considerably as a function of the layer width $h$ and particle collision inelasticity. In fact, we show that under the appropriate conditions a suciently strong inelasticity may suppress any kind of ordering/clustering in the system.

[1] ‍ J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6 (1973) 1181.
[2] ‍ D.R. Nelson and B.I. Halperin, Phys. Rev. B 19 (1979) 2457.
[3] ‍ A.P. Young, Phys. Rev. B 19 (1979) 1855.


The seminar will take place at 13:00 in classroom 2.0.D14 (Edificio Sabatini) Universidad Carlos III

Mirror site at http://euler.uc3m.es/scala/.

Last update on 18/January/2018 by Webmaster ()

Valid HTML 4.01 Transitional Valid CSS!