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An analysis of the spontaneous current instability in dc-voltage-biased extrinsic semiconductors is
given. We use a standard rate-equation model of electrical conduction in long one-dimensional extrinsic
semiconductors that includes effects of field-dependent impurity-impact ionization. The unique steady

state is constructed and its current-voltage diagram characterized.

It is shown that a negative

differential resistance is necessary for linear instability of the steady state both above and below the field
corresponding to impurity breakdown. We characterize the minimal sample length for oscillatory insta-
bility above the threshold field for impurity breakdown. The interval of voltages where the steady state
is linearly unstable is then shown to belong to the relatively flat part of the steady current-voltage dia-
gram. We comment on how our results may be related to recent observations on ultrapure p-type ger-

manium.

I. INTRODUCTION

Semiconductors in which spontaneous bulk current in-
stabilities occur have been shown to exhibit a wide range
of temporal oscillatory and chaotic behavior under suit-
able bias conditions, including period-doubling and
frequency-locking routes to chaos.!”’ Quantitative
verification of scaling predictions at the onset of chaos in
voltage-biased p-type germanium at low temperature has
been carried out with great accuracy.’ Comparatively,
the corresponding spatial structure of the current insta-
bilities has received less attention until quite recently.®~8

Recent experimental work on the spatial structure of
the current instabilities in dc-voltage-biased p-type Ge
beyond the threshold for impurity breakdown has provid-
ed us with quite a detailed experimental characterization
thereof.®7 Kahn, Mar, and Westervelt®’ have observed
that a time-periodic current oscillation due to motion of
domains sets in above a certain bias. This is similar to
the classical Gunn oscillations in GaAs.””!! However,
for p-type Ge there is an intermediate range between the
voltages for which the current is constant and the higher
voltage beyond which the current is purely time periodic.
In this intermediate voltage range, the current switches
intermittently between a small-amplitude oscillation at an
approximate frequency of 6 Hz and large spikes caused
by domain propagation.” At higher voltages, the spikes
repeat themselves periodically causing an oscillation of
the current at a frequency about four times lower.

In this paper we study a standard rate-equation mod-
el'? near the threshold for oscillatory instability of a
steady state, and use the results to interpret the experi-
mental observations of Kahn, Mar, and Westervelt.” We
find a reduced equation for the electric field valid both
above and below breakdown, except in a narrow layer
near the receiving contact where a different approxima-
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tion holds; the shape of the unique steady state and of its
current-voltage characteristic diagram; a minimal sample
length criterion for current instability based upon a
rough linear stability analysis of the steady state; the
steady state is linearly unstable only in an interval of volt-
ages corresponding to negative differential resistance
(NDR); NDR is also necessary for linear instability of the
steady state below breakdown, where different current in-
stabilities are observed.>!? Given the absence of NDR
below breakdown in the present model, the instabilities
cannot rise as bifurcations from the steady state

Although we only give order of magnitude estimates
and not precise quantitative results, it is hoped that our
small-signal analysis will pave the way towards a more
complete theoretical understanding of the behavior ex-
perimentally observed by Kahn, Mar, and Westervelt.’

Teitsworth!? has used a rate-equation model to show
that a region of NDR can occur in extrinsic photocon-
ductors due to the combined effects of velocity saturation
and field-dependent impact ionization. It is well known
that dc-voltage-biased semiconductors with NDR in the
plot of local current versus local electric field may be un-
stable to the formation of space-charge domains.'® In a
recent paper,'* Bonilla and Teitsworth have constructed
different traveling-wave solutions (periodic and solitary
waves and monotonic wave fronts) of the model of Ref.
12 on the infinite one-dimensional line. Space-charge
domains are either solitary waves or flat-top solutions
bounded by monotonic wave fronts.'>!® For the model of
Ref. 12, the monotonic wave fronts are stable while the
solitary waves are unstable under current bias.!”
Voltage-bias conditions cannot be enforced unless finite
samples are considered, and therefore boundary condi-
tions at the metallic contacts play a crucial role in the ex-
planation of current instabilities.!®!!

The model equations are'> !4
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0a,/0T=yaytp(kay—ra,), ayta,=a=const,

(1.1a)
€dE /3T =J,,(T)—e(pv;—D3p /3X) , (1.1b)
€dE /0X=e(p +d—a,) . (1.1¢)

Here E denotes the electric field, and zg=2 —«,, «,, and
p represent the neutral acceptor, ionized acceptor, and
free hole concentrations, respectively. The total concen-
tration of acceptor impurities is a const . In (1.1a), y«,
describes the generation of ionized from neutral accep-
tors by thermal and far-infrared radiation of appropriate
wavelength; y is proportional to the total photon flux.
The rate of impact ionization of neutral acceptors is
DKa, and the rate of hole recombination onto ionized ac-
ceptors is pra,. (1.1b) is Ampére’s law, describing the
balance between the hole current e (pv; —D3dp /3X) and
the displacement current €dE /dT. J,, is the total
current, equal to the current flowing through the external
circuit because the displacement current in a metallic
wire is negligible. Because of this identification, J,, is
sometimes called the external current. Finally, (1.1c) is
Poisson’s law for the electric field, in which the electric
charge is given by the free hole, compensating donor (d),
and ionized acceptor concentrations while € is the semi-
conductor permittivity.'> The hole diffusivity D is taken
to be independent of the electric field and approximately
determined by the Einstein relation D =kp T /e, where
po=dv,/dE is the mobility at E =0, and T} is the lattice
temperature. The drift velocity of the free holes, v; and
the recombination and impact ionization coefficients r
and « are all functions of the local electric field E, and are
depicted in Fig. 1.1%14

Equations (1.1a)-(1.1c) have to be solved with ap-
propriate boundary and initial conditions and with
specified bias. dc voltage bias means

JIEX Dax=-7. (1.2)
As boundary conditions we adopt!®
T (E(nL,T))=J,(T)—€dE /3T, n=0.1, (1.3a)

where J,(E) is the contact conduction current density,
having the same general properties as the control charac-
teristic discussed by Kromer.!® Equation (1.3a) specifies
that no current is created or destroyed at the contacts:
the contact conduction current density J,(E) is equal to
the hole current e(pv; —Ddp /dX) which is the right-
hand side of (1.3a) because of Ampere’s law (1.1b). The
main property of J,(E) is its being an increasing function
of E. This implies that the voltage drop at the injecting
contact, x =0, increases with increasing J, o for biases that
make NDR possible (see below). The qualitative proper-
ties (shape and stability) of the steady states and
domains?®® under dc voltage bias depend on where the
curve Jo(E) intersects the bulk current-field characteris-
tic curve we describe below. Thus a general increasing
J, O(E ) and an Ohmic-contact current density,

J.(E)=E/p,, p,>0, n=0,1, (1.3b)
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FIG. 1. Sketch of the electric-field dependence E of (a) the
hole drift velocity v,;; (b) the impurity-impact-ionization
coefficient «; and (c) the capture coefficient . For p-type Ge, we
have the following typical values E =v, /uy~10 V/cm, v, ~10’
cm/s, ko=2.5X10"%cm’/s, and ro~107° cm’/s.

can be analyzed in the same way and these analyses will
yield similar results. We adopt the simple Ohm’s law
(1.3b) in the rest of this paper, although we will comment
upon the changes other boundary conditions would bring
about in the pertinent places.

In Ref. 14 a theory of waves traveling on an infinite
one-dimensional sample (with constant current bias) was
obtained by using the large separation between the dielec-
tric relaxation time and the characteristic time of ioniza-
tion of the impurities: the impurity ionization is a much
slower process than dielectric relaxation. The illumina-
tion rate does not count above the breakdown field, al-
though it is a crucial process below threshold.'? If we

make Eqgs. (1.1) dimensionless, so that time is measured in
14 (

the slow scale of impurity ionization, they become™ (see
also Appendix A)
0A4/9r=I'(a—1—A4)/B+P[(a—1)K —R
—(K+R)A], (1.4a)
BOE /37=J(7)— VP +383P /dx , (1.4b)
O0E/dx=P— A4 . (1.4¢)

Here the coefficients V,K, and R are nondimensional ana-
logs of v,,r and «k, and therefore they are known as non-
linear functions of the electric field E (x,7).'* Equations

(1.4) have to be solved with the boundary conditions
E(nl,7)=p,[J(7)—BOE /37], n=0,1, (1.5)

at the Ohmic contacts. p, is the dimensionless resistivity
of the contact at x =nl (n =0,1). Under dc voltage bias,
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J (7) is determined by solving (1.4) and (1.5) together with
the condition

fOIE(x,T)dx =¢ . (1.6)

Here ¢ is minus the dimensionless voltage (see Appendix
A).

In Egs. (1.4) we have the following relations among the
parameters:'*

B<<bd<<l, T/B<<1. (1.7)

The rest of the paper is organized as follows. In Sec. II
we analyze the uniform steady states of our model and
then discuss the phenomena of impurity breakdown and
of NDR. In Sec. III we derive reduced equations valid
above and/or below breakdown except in a narrow
boundary layer near the receiving contact. We find the
unique nonuniform steady state under dc voltage bias in
Sec. IV and describe its current-voltage characteristic di-
agram. Section V is devoted to a simplified linear stabili-
ty analysis of the (nonuniform) steady state above and
below breakdown, respectively. We discuss our results in
Sec. VI. Appendix A contains our nondimensionalization
of the equations and the definition of the parameters we
use. Appendix B considers the linear stability of a
nonuniform steady state.

II. STEADY STATES ON THE INFINITE LINE
AND THE BREAKDOWN FIELD

Let us start analyzing the uniform steady states of Egs.
(1.2) for constant J. They are constant solutions of the
system

P=4, (2.1a)
J—PV =0, (2.1b)
INa—1—A4)/B+P[(a—1)K —R —(K +R)A]=0.

(2.1¢)

Multiplication of (2.1c) by ¥? and elimination of P and A4
by means of (2.1a) and (2.1b) yield the following expres-
sion for J:

Da—1)V?/B+[(a—1)K —R —T/B]

XVJ—(K+R)J*=0. (.2)

By solving (2.2), we find a function of the electric field
J=j(E). (2.3

The function j(E) becomes very steep near the so-called
breakdown field E,, at which dj/dE = . Instead of
writing the (cumbersome) exact equations for E,, we can
use the smallness of the parameter I' /B, together with
(2.2), to obtain the approximate expression

(@a—1K (Ey,)—R (Ey,)=0 . (2.4)

(2.4) is the Lambert criterion.?! The local maximum of
the function K (E) gives rise to a NDR region of j(E)
above breakdown for a compensation ratio a close to 1
(a=a/d between 1 and 1.5, i.e., for a closely compensat-
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FIG. 2. Schematic graph of j(E) vs electric field demonstrat-
ing NDR. j(E) has a local maximum at (Ey,Jy) with
E,, ~E,,, a local minimum at (E,,,J,,) and it tends to a—1 for
large values of E.

ed semiconductor), as shown in Fig. 2. Numerical evalu-
ation shows that the difference between the fields corre-
sponding to the local maximum and minimum of j (E) in-
creases as a tends to 1.

The main distinguishing feature of phenomena at each
side of the breakdown is the order of magnitude of the
current J. From Eq. (2.2) we see that, except in a small
neighborhood of Ey,

o(T'/B) for E<E,,

JEY=10(1) for E>E,, . 2.5

Accordingly, it will be convenient to rescale the current
when studying phenomena below breakdown. We thus
expect that different equations approximate (1.4) at each
side of E,,. They will be derived in Sec. III.

III. REDUCED EQUATIONS AT EACH SIDE
OF BREAKDOWN

A. E>E,,

Let us assume that the voltage, boundary, and initial
conditions conspire to keep E > E, throughout the semi-
conductor sample. Then we can obtain the leading-order
approximation to Eq. (1.4) by equating all the small pa-
rameters 3, 8, and I" /B to zero. Thus we find

P=J(7r)/V(E),
A=—0E/ox+J(1)/V(E),

which when inserted in Eq. (1.4a) yield the following hy-
perbolic equation [cf. Eq. (5.9) of Ref. 14]:

3%E /3x9d7+¢,dE /37+c,3E /3x +cy,=V " 'dJ /dT

(3.1a)
cl(E,J)=J(’1')V'(E)/V(E)2 , (3.1b)
c(E,J)=J(7)[K(E)+R(E)]/V(E), (3.1¢)
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cy(E,J)=({—1+aK(E)/[K(E)+R(E)]}V(E)—J (7))
XJ(r)[K(E)+R(E)]/V(E)? . (3.1d)

Equation (3.1) is to be solved with the boundary condi-
tion

E(O0,7)=pyJ(7), (3.2)
the bias condition
JIExmax =g, (3.3)

and given initial conditions. [The mathematical reason
for keeping the boundary condition at the injecting con-
tact and not at the receiving contact is that the wave
solutions of (3.1a) on the whole real line propagate from
left to right for ¢ >0.'* Thus what happens at x =/ de-
pends on the input arriving from the bulk, whereas what
happens at x =0 affects the field at the bulk.] Since the
solution of the reduced problem (3.1)-(3.3) cannot, in
general, satisfy the boundary condition at x =I, a
diffusive boundary layer is attached there. In the bound-
ary layer

(x —1)=01(9),
P~QJE /dx ,

A~—1+aK(E)/[K(E)+R(E)],

and therefore

83’E /3x*~V(E)IE /3x, with E(l,7)=p,J(7), (3.42)
which yields
E(x,7) E -1
(x—1)/8~ o) dE [onm(LT)V(s)ds (3.4b)

E,,.(l,7) is the solution of the outer problem (3.1)-(3.3)
evaluated at x =/. Notice that the boundary layer prob-
lem is quasistationary, so that time in (3.4b) enters as a
parameter.

Remark 1. If ¢ is large enough so that J >>T'/B, Eq.
(3.1) holds even if the resistivity is so small that E <E,,
at the contacts.

B. E <E,,

According to Eq. (2.5), E and 0E /9x are O(1) and
J =0(TI'/B) if the voltage and the boundary conditions
are such that E <E,,. From Eq. (1.4a) we then find
P=0('/B). Thus BOE/3r=0(I') can always be
neglected whereas 83P /3x =0(8T /B) can be ignored
outside a boundary layer at x =/ (the receiving contact).
The reduced equation valid for 0 <x </ is therefore ob-
tained by setting 8 and S (but not I /) equal to zero in
(1.4). The result is again Eq. (3.1a), where c, is still given
by Eq. (3.1b), but now the coefficients c, and c; are

) (E,J)=T/B+J(7)[K(E)+R(E)]/V(E), (3.1¢e)
c;(E,J)=T(a—1)/B+J(1)[(a— 1)K (E)
—R(E)]/V(E). (3.19

The reduced outer problem for fields below breakdown
is therefore solving Eqs. (3.1a), (3.1b), (3.1e), and (3.1f),
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subject to the conditions (3.2) and (3.3) plus a given initial
condition for the field. At x =/ the field is again obtained
by means of (3.4b).

Remark 2. Notice that we can formally find a reduced
outer problem that holds independent of the value of E
(below or above breakdown). In fact, by setting the pa-
rameters 6 and S8 equal to zero in Egs. (1.4), we find Egs.
(3.1a) and (3.1b) together with

¢,(E,J)=T/B+J(7)[K(E)+R(E)]/V(E) ,

cy(E,J)=T(a—1)/B
+J(1)[(@a—1)K(E)—R(E)—T/B]/V(E)
—[J(r)/V(E)*[K(E)+R(E)]. (3.5b)

Equations (3.5a) and (3.5b) become (3.1c) and (3.1d) above
breakdown and (3.1a) and (3.1f) below breakdown, re-
spectively.

Remark 3. Different scalings may be relevant if Bl is
not much smaller than 1 [l <<1 for the experiments in
p-type Ge (Refs. 5, 7, 12, and 14)]. For example, a slow
scale x =0 () may be important if B/ >>1 or even of or-
der 1.

(3.5a)

IV. STEADY STATES ON THE dc VOLTAGE BIASED
FINITE SEMICONDUCTOR

We will find the stationary solutions to Egs. (3.1a),
(3.2), and (3.3) with the coefficients (3.1b), (3.5a), and
(3.5b). These equations constitute an outer approxima-
tion to the original problem valid for all E >0, outside a
narrow diffusive boundary layer at x =I. In the bound-
ary layer the solution is approximately given by (3.4b).

The stationary solution satisfies

c,(E,J)dE /dx = —c4(E,J) , (4.1a)
E(0)=py/ , (4.1b)
JE(ax=¢. (4.10)
The steady state is therefore given by
E(x)
x =—fpoj Jds c,(s,0) /c5(s,d), 0<x<I,  (4.2)

with J determined by (4.1c). At x =I, E=E (l) will, in
general, be different from p,J, so that the boundary layer
(3.4b) has to be inserted there. Note that these equations
are identical to those of the steady states of the classical
model of the Gunn effect in n-type GaAs.!! We shall
show below that the area under the steady state (4.2) (for
each given J), ®(J), is an increasing function of J. Then

D ())=¢ 4.3)

has a unique solution J(¢) which is itself an increasing
function. This proves that there is a unique dc voltage
biased steady state for each ¢. Let us indicate now the
qualitative shape of this state for different ¢’s and also
what its current-voltage characteristic J(¢) looks like.
Consider a long semiconductor with a compensation
ratio such that j(E) presents NDR above breakdown
(Fig. 2). In the NDR region, Eq. (2.3) has three solutions
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E;(J), (4.4)

Outside the NDR region, we will still call E,(J) [E;(J)]
the solution of (2.3) on the first (respectively, third)
branch of j(E). Let us define now

i=1,2,3 with El(J)<E2(J)<E3(J) .

(4.5a)
(4.5b)

Pom=Ey/Iy »
Pom =Em /Jm .

Then we may distinguish three cases for the variation of
the steady state with ¢ according to the value of the resis-

6 4
E
5
4 A
(a)
3 -
2 . T —A 1
0 2 a 6 500
X
E |
|
"
8 -
(b)
7 ~
6 -
5 4
0 ! ' ' r 500

X

FIG. 3. Graphs of the electric field vs distance for the steady
states. (a) poJ <E,, or E,<pyJ <E;; (b) E,<peJ <E, or
poJ > E;. We have ignored the very narrow diffusive boundary
layer at x =/. Numerical data correspond to a=1.4, I =500,
po=3.817, and for (a) J=0.001, while for (b) J=0.25. The
scale for E has been multiplied by 10, which makes the unit
equal to 1 V/cm, with our choice of nondimensional units. No-
tice the break in (a): E grows very fast until E =E is reached.
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tivity at x =0: A, 0<pg<porr; B, Porr <Po <pPom; and C,
Pom <Po-

A. Case A. 0<po<poy

The curves j(E) and E /p, either do not intersect, or
they do so on the third branch of j(E). If these curves do
not intersect, the field at x =0 is always smaller than
E,(J) or E;(J). Then ¢,>0, ¢3<0 in (4.1a) which im-
plies dE /dx >0 for x 20. The steady state is always as
depicted in Fig. 3(a) for any J>O0: it increases from
E(0)=pyJ trying to reach E(J) if J <Jy, or E3(J) if
J>Jy. At x=I, E(x) changes abruptly within the
boundary layer from approximately E;(J) to its boundary
value p,J. Clearly the area under the steady state, ®(J),
grows with J as said above. The current-voltage charac-
teristic J(¢) is shown in Fig. 4, where the flat portion
above breakdown corresponds to J~J,,. For consider
the following.

(i) Below breakdown, J=0(T /B) << 1, which accounts
for the almost zero value of J(¢) in Fig. 4.

(ii) At breakdown, E (J)~E,, for J <Jy, so that the
area ¢ (J) grows with J due to the increase of E (0)=pyJ,
and not to the increase of E;(J), the bulk value of E (x).
For a long semiconductor, E (x) grows from pyJ to E(J)
in a layer of width O (1) which is small compared to the
length / >>1. Then in the breakdown region, the increase
in the area ¢ (J) due to the increase of J is modest, of or-
der 1, when compared to the total area which is of the or-
der of Ey I Thus ®y(J) varies little with J when
¢~ E 1, which means that the inverse function J(¢) in-
creases abruptly with ¢ when ¢ ~ E, [ as shown in Fig. 4.

(ii)) The flat part of J(¢) at J =J),. For J slightly
larger than J,,, the steady state has the following struc-
ture: a rapid increase [on a region of width O(1)] from

JSS

b

FIG. 4. Characteristic current-voltage diagram for the steady
state. The flat portion is reached at a current J=J; when
j=E/p and j(E) intersect on the second (NDR) branch of the
latter, J =J,, when both curves intersect only on the first
branch of j(E); and J =J,, when both curves do not intersect
on the first two branches of j(E). For a=1.4, [ =500, and
po=13.817, the “flat” portion of J(¢) has a slope which is twice
and ten times smaller than that of the portions immediately fol-
lowing and preceding it, respectively.
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E(0)=pyJ to E,(Jy)=E,,, a flat portion of variable ex-
tension Ax; an O(1) increase to E ~E;(J,,) [assuming
E,(Jy) and E;(J,,) to be of the same order]; and the
O (8) boundary layer at x =I. If />>1, we may ignore
the transition layers of O(1) width and the narrower
boundary layer. Then the steady state E(x), of area
SE(E (I, Es(Iy)l) is E=E|(Jy), for 0<x <Ax,
and E =E;(J,,), for Ax <x <I, where

Ax=[E;(Iy ) —d1/[Es(Tp)—E \(Jy)] . (4.6a)

If E5(Jy)>>E (Jy,), the case of very closely compensat-
ed semiconductors all, the transition region between
E,(Jy) and E;(J,,) cannot be ignored, and Ax is solution
of the equation

E\(Jy)Ax + fA’ E(x)dx=6¢ . (4.6b)

(iv) For E;(Jy )l <@, J(¢) increases again at a finite
rate as shown in Fig. 4. When the lines E /p, and j (E)
intersect on the third branch of the latter, there is an in-
terval of areas, (¢,¢,), for which poJ(¢) is larger than
E;(J). Then dE /dx <0 and the steady state is as depict-
ed in Fig. 3(b), still having an area ¥ (J) that increases
with J.

(v) Note that in Fig. 4 we have exagerated the steepness
of J(¢) at breakdown (by ignoring variations of field in
its neighborhood) and also its flatness at J =J,, (by ignor-
ing variations of current in its neighborhood). The tran-
sition layers of width O (1) are more noticeable in smaller
samples and tend to smooth out these effects.

B. Case B. poy <po<pPom

E /py and j(E) intersect on the two first branches of
the latter. Let J, and J;, be the currents at the corre-
sponding intersection points.

E\(Jp)=poJs »
EZ(Jcrit )=p()‘lcrit .

Arguments similar to those in case A show that E(x) is
as shown in Fig. 3(a) for 0<¢ <E (J ) ,E,(J ) <o
<¢,,¢>¢,, and as shown in Fig. 3(b) for
E\ ()l <¢p<E,(J )l and ¢, <¢p<¢, [¢, and ¢, corre-
spond to the intersections of E /p, with the third branch
of j(E)]. The current-voltage characteristic is as shown
in Fig. 4 with the flat part of J(¢) at J=J, instead of
Jy- An important difference is that the limits J 1J;, and
JIJ i have to be  distinguished. When
E\(J ) <d<E,(J),J1J o, and the steady state
goes from a plateau E =E,(J ;) (for (0<x <Ax) to
another one with E =E | (J ) (for Ax <x <), through a
transition region of width O (1), where

Ax = [¢_E2(Jcrit )l ]/[EZ(Jcrit )_El(cht )] . (4.93)

When E,(J ;) <d<E3(Joy)l, JUJ .y, and the steady
state goes from a plateau E =E,(J ;) (for 0<x <Ax) to
another one with E =E;(J ) (for Ax <x <I), through a
transition region of width O (1), where

Ax =[E;(J )] —¢1/[E3(J i) —E, (T oie)]

4.7)
(4.8)

(4.9b)
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If E;(J ) > E,(J ) [or Eo(J 45 ) >>E ((J . )], the case
of very closely compensated semiconductors all, the
transition region between E,(J,) and E;(J) [or
E,(J.;) and E(J ) for J1J ;] cannot be ignored, and
Ax is solution of the equation

1
EyUgi)bx+ [ L Exdx=¢
[or E,(J . )A% + fA’ E(x)dx=¢]. (4.9

Note that when E(J,)] <¢ < E,(J 4, ) [Fig. 3(b)] there is
a voltage drop near the injecting contact, as observed ex-
perimentally.’

C. Case C. Po > Pom

Then E /p, and j (E) intersect only on the first branch
of the latter, at a current given by (4.7). E(x) is as de-
picted in Fig. 3(a) for 0<¢ <pyJ,l, and as depicted in
Fig. 3(b) for ¢ >py/,l. The flat part in Fig. 4 is reached
at J~J,,. Equation (4.6a) holds with J,, instead of J,,.
If E4(Jy) >>E (Jy,), we have

fo“"E(x)dx +E, (I—Ax)=¢ , (4.10)

instead of (4.6b).

D. Other boundary conditions

A somewhat unphysical feature of our simple linear
contact current density curve is the absence of a voltage
drop for those voltages that give rise to a steady state
with dE /dx >0 as shown in Fig. 3(a). It is very simple to
remedy this situation if it is indeed experimentally
checked that a voltage drop is present for all steady states
below the threshold for instability. A possibility is to use

0, for E<E,,,

JolE)=\(E—E,,)/py for E>E,, , @.1D

with a resistivity such that J,(E) intersects j(E) on its
NDR branch. A motivation for this choice is the general
formula used by Grubin!® for the metal-semiconductor
contacts used in Gunn effect experiments (see also p. 200
of Ref. 10):

Jo(E)=—Jg {exp(—eEL¢ /vkyT,)
—exp[—(v™'—1)eELc/vkpT,]} . (4.12)

Here v is the ideality factor, that describes the contact as
dominated by thermoionic emission (v=1) or by tunnel-
ing (v>>1). Jg is the reverse flux that may be related to
the barrier height through the Richardson equation. kg
is Boltzmann’s constant and T, the lattice temperature.
All the parameters in (4.12) except for L. represent close-
ly the properties of the metal-semiconductor interface.
L. gives an idea of the extension of the heavily doped
contact region next to the metal-semiconductor inter-
face!? and it is a tunable parameter in Grubin’s considera-
tions.!® By varying the three parameters v, Jg, and L, it
is possible to achieve a wide variety of shapes for Jy(E),
including sublinear and superlinear curves that go to
infinity with E and also saturating curves that go to a cer-
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tain finite limit as E — c.!% In particular, it is possible to
achieve a sublinear Jy(E) that intersects j(E) only on its
second (NDR) branch. This J,(E) would also give rise to
steady states with a voltage drop [Fig. 3(b)] for J <J .,
just as the piecewise linear curve (4.11) above. The
analysis of the steady state and its current-voltage
characteristic is identical as that explained above and we
omit it.

V. LINEAR STABILITY OF STEADY STATES

Here we analyze the stability of the steady states of the
dc-voltage-biased Eq. (3.1). To simplify matters we shall
ignore both the boundary layer region and the spatial
structure of the steady state. While ignoring the bound-
ary layer is justified because it contributes little to the in-
tegral of the field, we expect that ignoring the spatial
structure of the steady field yields qualitatively valid re-
sults for long enough samples.!® (Quantitatively valid re-
sults are obtained only for particular values of the voltage
and of the contact resistivity at x =0.) Note that adopt-
ing piecewise linear versions of the coefficients in Eq. (3.1)
does not lead to great simplifications, unlike what hap-
pens with the classical model for the Gunn effect in
GaAs.! The reason is that the second-order partial
derivative in (3.1a) (absent in the usual Gunn effect mod-
el) precludes using the flight time to analytically calculate
the impedance.!® Thus the calculations that follow are
the simplest ones one can perform short of numerical
solution of the model. (See also Appendix B.)

Let E=E be the constant steady state corresponding
to a (minus) voltage ¢ and J,=j(¢/I) the corresponding
current. Then let

E(x,7)=E, +eé(x)exp(At) , (5.1a)

J(r)=J,+eexp(Ar), e<<1. (5.1b)
The linearized equation for @(x) is

(Acy)de/dx +(he;+c)e=A/V+cs . (5.2a)

Here c; and c, are as in Egs. (3.1b) and (3.5a) evaluated
at E=E, and J =J,, while ¢, and cs are defined as the
following functions also evaluated at E =E and J =J:

c4=03c,(E,J)/3E , (5.2b)

¢s=—0ac4(E,J)/dJ . (5.2¢)

Note that all coefficients in (5.2a) are positive except for
¢, which may be negative above the breakdown field,
thus providing the NDR.!* ¢, has the same sign as
dj /dE, the slope of the function j(E). In fact, by use of

the implicit-function theorem,
dj/dE =c4/c5 (c5>0), with ¢;(E,j(E))=0. (5.3)

Equation (5.2a) is to be solved together with the bound-

ary condition corresponding to (3.2) for &(x), namely,
2(0)=p, . (5.2d)

The solution of Eq. (5.2) is
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e(x)=(A/V +cs)/(Ae;t+cy)
Fpo—(A/V +c5)/(Aey+cy)]lexp(—Ax /1),

(5.4a)

A=(Ac;+c)dl/(A+c,) . (5.4b)

Insertion of (5.1a) and (5.4a) into the voltage bias condi-
tion (3.3) tells us that A has to be zero of the impedance
Z(A):

Z(A):[(C4—CIC5 V)l +(C5V_C2)A][V(C4_C1C2)]71

XI(A+e *—1)/A*—pylle *—1)/A . (5.52)

A is obtained from a zero of the impedance by inverting
the relation (5.4b),

A=(cyd —c,A)/(A—c,]) . (5.6)

For E > E, csV is equal to ¢, up to terms of order I' /83.
Then we can simplify (5.5a) to

ZMN=I V" [(A—e 2—1)—aAle A—1)]/A%,
a=pV/I. (5.5b)

The zeros of Z(A) are the nonvanishing zeros of
A’Z(A). But this latter function is an exponential poly-
nomial in (—A) without a principal term.?> Then it has
an unbounded number of zeros with arbitrarily large
ReA <0 (Ref. 22, Theorem 13.1). The crucial thing is
now whether A2Z(A) has zeros with positive real part.
We now show that for both E > E,  and E <E,, all zeros
of Z(A) have negative real part, and then analyze the
consequences of this fact.

A. E>E,,

Let us start with the case of E > E, , Eq. (5.5b), and
define F(A)=A%Z(A)V/I%. Tt is important at this time
to check that ReF(iw) and ImF (iw) are even and odd
functions of w €ER, respectively, and that

(5.7a)
(5.7b)

ImF(iw)=w—sino+aw(l—cosw)>0 for >0
F(A)~(14+a)A as A— o with ReA>0.

Then the principle of the argument?? shows that F(A)
does not have any zeros with positive real part. There-
fore F(A) has infinitely many zeros with negative real
part (which may be arbitrarily large). In the simple case
of ideal Ohmic boundary conditions a =0, F(A) coin-
cides with the exponential polynomial studied by
McCumber and Chynoweth in their analysis of the Gunn
effect in GaAs.?> Then all the zeros of F(A) are simple
and may be ordered starting with that with largest real

part, namely
A=p,tiog=~—2.091i7.46 . (5.8)

By using the implicit-function theorem it can be shown
that the real part of the zeros of F(A) increases with a.

B. E <E,,

Consider now E < E,_ and define
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F(A)=(1+bA)A+e A—1)—cAle 1)
=(A/IPZ(A)WV(cs—cicy)/cs—ciesV),  (5.9a)
T b=(csV=¢y)/[Ilca—CicsV )], sgnb=sgnldj/dE),
(5.9b)
c=poVics—cic3)/[(cyg—ciesMI]>0. (5.9¢)

Above impurity breakdown b =0, ¢ =a, and (5.9a) coin-
cides with (5.5b). From Eq. (5.9a) we derive the relations

Re[Fliw)]=—(1—cosw)—bo(w—sinw)—cwsinw ,

(5.10a)
Im[F(iw)]=w—sino—(b —c)o(l—cosw) , (5.10b)
F(A)~bA® as A— o with ReA>0 . (5.10c)

For values of b and ¢ 20, we can use the principle of
the argument?? to show that the only non-negative zero
of F(A) is the irrelevant A=0. In fact, let us first consid-
er (b —c)<(1—2/m). We immediately see that

Im[F(iw)]>0 for ©>0 if (b—c)<1—2/7. (5.10d)

The image by F(A) of the right half complex plane A ex-
cluding the origin, Fig. 5(a), does not enclose the origin of
the complex plane F(A) because ImF(iw) never van-
ishes, see Fig. 5(b). Then no zeros of F(A)=Z(A) have
positive real part. Let (b—c)>(1—2/m). Then
ImF (iw) may vanish. However, rewriting (5.10a) as

Re[F(iw)]=—(1—cosw)—bw[w—(1—c/b)sinw] ,

it is clear that Re[F(iw)] is always negative
(0<b —c<b). Thus the image of the curve enclosing
the right half plane (minus the origin) will not enclose the
origin of the complex F plane [Fig. 5(c)]. Then the prin-
ciple of the argument®? implies that no zeros of F(A)
with positive real part exist.

C. Consequences

We now describe the consequences of our results. The
first one is that a NDR is needed for linear instability of
the steady state both above and below breakdown. Then
the steady state is linearly stable below breakdown be-
cause dj/dE >0 (Fig. 2), and any instabilities observed
there cannot arise as bifurcations from the steady state.

In fact, the steady state becomes oscillatory unstable at
a field E,~¢/I corresponding to ReA=0 in (5.6), with
A=p,+iw, being the zero of Z(A) with largest real
part [i.e., (5.8) for p,=0]:

c4(Es’Js )=C2(Es’Js ){/J‘l_w%/[cl(Es’Js )I_.u‘l]} /1<0.
(5.11)

Then a negative slope of the curve j(E)—that is, a re-
gion of NDR —is necessary for the steady state to be-
come unstable (dj /dE =c,/cs,c5>0). Let o be |dj /dE|
in the NDR region. Solving (5.11) for / and minimizing
the result with respect to the electric field, we find the
minimal sample length necessary to support a (linearly)
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unstable steady state

I>1, . (5.12a)

“Here [, 1s the minifhum Of the positive solution of Eq.’

(5.12b) below for fields on the NDR region,

ocicsl?+ | l(oes—ciex)l —cy(u3+0?)=0 . (5.12b)

Note that the solution of (5.12b) decreases when o in-
creases. Above breakdown, (5.12b) may be written as

a2+ |, | VieV/(IV')—1]

Xol —oViul+w?)/(JV')=0. (5.12¢)

In dimensional units the criterion (5.12a) becomes
L, d=(ev,/epy)l,, =8.85X10'], cm™?

~10° cm 2 (for p-type Ge) .

(5.12d)

For d ~10!" ¢m ™3, we find L,,=0.1 mm which is about
100 times smaller than the experimental samples of
Kahn, Mar, and Westervelt.’

The minimal length formula (5.12) is more complicated
than its counterpart in the classical model of the Gunn
effect in n-type GaAs.!>?> A source of ambiguities in its
application to Ge is that we have considered the steady
state to be uniform in space while E(x) may be quite
nonuniform as discussed in Sec. IV. We may take E; to
be some average of E (x), but it is not clear which one we
should use. For n-type GaAs it is possible to show that
the minimal length that appears in the criterion (5.12)
really means: the (weighted) length of the sample portion
where E (x) takes values on the NDR branch of j(E) has
to be larger than [, for E(x) to be linearly unstable.?*
For the model under study in this paper, we shall now as-
sume that a similar criterion holds: Let Iypgr be the
length of the interval where E(x) takes values on the
NDR branch of j(E). Then E (x) is linearly stable under
voltage bias if Iypr </, and linearly unstable otherwise.

An argument in support of this assumption is given in
Appendix B. A proof should reveal whether a weighted
average such as the flight time should be substituted for
Iypr in the previous statement. Taking this for granted,
we shall now show that there exist two voltages ¢, and
b E\(U<¢p,<d,<E3(J) (J, is either Jy;, J 4, OF
J,, for cases A, B, or C in Sec. IV, respectively): For volt-
ages outside the interval (¢,,¢,) the steady state is linear-
ly stable, and it is linearly unstable for voltages inside this
interval. This statement follows from the analysis of the
steady state performed in Sec. IV. Take, for example,
case B (the discussion of the other cases is analogous).
Ignoring transition layers of width O(1) as compared
with I >>1,Iypr =Ax for E(J i )l <P <E,(J ). &, 1s
the voltage corresponding to Ax=1/, in (4.9a). For
larger ¢, E=E,(J;) occupies a longer portion of the
semiconductor, and the steady state is then linearly un-
stable. For E,(J ;)N <¢<E;(J ), E=E,(J) if
0<x <Ax, and Ax shrinks as ¢ increases: ¢, is then the
voltage corresponding to Ax=/,, in (4.9b). For larger
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ImF

Re F

(b)

Re F
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FIG. 5. (a) Curve enclosing the right half complex plane A but not the origin; (b) image of the curve depicted in (a) under the map
F(A)if (b —c)<1—2/m; and (c) same as in (b) if (b —¢) > 1—2/7 and ImF (i) has two zeros for positive w.

voltages, Ax <1,,, and the steady state is again linearly
stable.

Let us end this section by noticing that only minimal
modifications are needed to extend our analysis to more
general boundary conditions. If the contact current den-
sity is a nonlinear function of the field, as in (4.12), the
previous analysis and results hold with
po=[dJo(E;)/dE]". If we adopt a constant field bound-
ary condition, we just have to use p,=0 in our results.

VI. DISCUSSION

In this paper we have derived a reduced equation for
the electric field valid outside a narrow boundary layer at

the receiving contact, for all values of the field (both
above and below breakdown). We have found the unique
steady state under dc voltage bias and qualitatively dis-
cussed how its shape changes according to the voltage
and the boundary conditions. For a linear (Ohmic-) con-
tact current density curve J,(E), the steady state lacks a
voltage drop near the injecting contact [Fig. 3(a)] for cer-
tain values of the bias. This defect can be readily correct-
ed without affecting our results by using a different Jy(E)
as explained in Secs. IV and V. We have also discussed
the shape of the steady current-voltage characteristic dia-
gram J(¢). For all the boundary conditions considered,
we have shown that this diagram is as in Fig. 4, with a
(relatively) flat portion separating two regions where the
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slope of J(¢) is not small. A simplified linear stability
analysis of the steady state has shown that it is linearly
stable outside an interval of voltages belonging to the flat
part of J(#). This latter feature is observed in the ex-
periments [see Fig. 8 of Ref. 7: let us join the last points
where there are no oscillations, corresponding to ¢, and
¢, The line thus obtained has a slope which is eight
times smaller than that of the current-field diagram be-
fore the instability, and three times smaller than the slope
of the current-field diagram after the instability. A simi-
lar calculation for a=1.4 and [ =1000 yields a relatively
flat portion of the current-field diagram J(¢) which has
a slope ten times smaller than that of J () before it, and
two times smaller than the slope of the current-field dia-
gram after the flat portion. Since the numerical results
are sensitive to the compensation ratio a, a quantity not
reported in Ref. 7, we consider the agreement as satisfac-
tory and do not try to improve it in the present paper]. A
biproduct of our analysis is the minimal length criterion
(5.12): for a semiconductor shorter than /,, the steady
state is linearly stable. The samples in Refs. 6 and 7 are
noticeably larger than the value 0.1 mm estimated for
d =~ 10" cm 3, and therefore the presence of instabilities
is compatible with our criterion. Much shorter samples
were used by Teitsworth?> who reported that no instabili-
ties could be observed on a sample with L =0.5 mm (see
Table 3.2 and Fig. 3.1 of Ref. 25). When another sample
of the same boule was cut with L =4 mm, spontaneous
oscillations were observed.?> This provides evidence in
favor of our criterion (the estimate L,,~0.1 mm is a
rather gross one, given the lack of accurate curves for the
transport coefficients and the approximations involved in
our work).

Further understanding of the instabilities of the
current in dc-biased extrinsic semiconductors should
proceed along two lines. First a Hopf bifurcation
analysis should reveal how oscillatory branches bifurcate
from the steady state at the voltages ¢, and ¢,. This
analysis has been performed recently for n-type GaAs.?
Were the present model to explain the experimental re-
sults,” the oscillatory branches bifurcating at ¢, and ¢,
(representing small amplitude oscillations of the current)
should both be stable near the bifurcation points. The
rest of our interpretation depends on the branch of solu-
tions mediated by the motion of domains (solitary waves).
So far we have been able to describe only the part of the
oscillation period in which a domain moves far from the
contacts,?’ not the stages of disappearance of a domain at

|

Qw/ﬂdz(a)l/Zﬂ’)[(K +R)V/V’]J=Jso/[(K +R)V/VI]|J=Jd .

Note that the frequency ratio is inversely proportional to
the ratio of the mobilities at the electric fields E,(J) given
by the corresponding values of the current J,, and J,.
Since the mobility decreases with the field and
E,(J,)<E,(J,;), the ratio (6.3) will be smaller than
®,/2m. Numerical evaluation for typical values of the pa-
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the receiving contact and the formation of another one at
x =0.?7 To understand the large amplitude oscillations
of the current and the threshold behavior, one has to wait
until the numerical and asymptotic analysis of the re-
duced equations derived in this paper are completed.
With the present information it is possible however to
qualitatively understand an interesting observation: why
the frequency of the small amplitude oscillation of the
current in the experiments7 of Kahn, Mar, and Westerve-
It is higher than the frequency of the domain mediated
oscillation.

Since the imaginary part of the zero of the impedance
does not vanish at the critical voltages ¢, and ¢,, it is
plausible that Hopf bifurcations from the steady state
occur at these values of the bias. The frequency of the os-
cillations at the threshold ¢, is

QSO=ImK:C2(I)1/[Cll +|l-l/ll]
~cy0,/(cql)

=(K+R)Waw,/(V'l), 1>1. (6.1)

Near threshold, small amplitude current oscillations are
observed.” Assuming that they are described by a Hopf
bifurcation from the steady state, their frequency should
be close to (6.1). Besides small oscillations, current spikes
caused by formation of domains are observed. The
domain size varies as it moves towards x =/, and also the
current varies. Nevertheless, let us estimate the frequen-
cy caused by domain dynamics by using the wave speed
calculated for a domain moving with a constant
current.!* This speed was found to be larger than a value
C*=(K +R)V/V', so that we estimate an angular fre-
quency

Q. =27C*/I1=2m(K +R)V/(V'l) . (6.2)

It seems that the frequency of the spikes is of the same
order as that of the small amplitude oscillation (6.1) when
(5.8) is used. This however is illusory: (6.1) and (6.2) must
be compared under the same dc voltage conditions ¢.
Then the current J, corresponding to small oscillation
about the steady state with voltage ¢ will be higher than
the current J; corresponding to a domain traveling over
the steady state so that the total area under E (x,7) is also
¢. (J; may be calculated from the current-voltage
characteristic diagrams of both the steady state and the
domain.?®) Therefore the ratio between the frequencies
(6.1) and (6.2) will be approximately,

(6.3)

rameters®® yields a frequency ratio slightly larger than 1.
Experimentally however, Q.,/Q, ~4. What is the reason
of this discrepancy?

We believe that the discrepancy is indirect evidence
showing that the compensation ratio a is not a constant
throughout the sample of Kahn, Mar, and Teitsworth,
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but that, in fact, increases with x for most of the sam-
ple.?’ If this is so, as the solitary wave moves toward the
receiving contact, its corresponding current must in-
crease (the NDR region moves upward, to larger
currents, as a increases, cf. Fig. 2). But then the velocity
of the solitary wave diminishes (which accounts for the
larger experimental value of (., /Q ;) and so does its size.
This shrinking of the domains as they move is observed
experimentally,” while preliminary numerical calcula-
tions*® using the reduced equation (3.1) show that the
sizes of the domains do not change after they reach matu-
rity: typically a domain is formed a short time after ¢ =0,
moves toward the receiving contact, and starts leaving
the sample when it reaches the receiving contact. Then
the current goes up until another domain is created at
x =0. The new domain moves toward x =/ and grows as
it absorbs the area released by the old domain at x =1.
As this process goes on, the current decreases slowly.
After a certain amount of time and for long enough sam-
ples, the old domain has disappeared, the new one has
reached maturity, and the current remains constant dur-
ing the time it takes for the new domain to reach the re-
ceiving contact. See Fig. 6. We will present the results of
our numerical simulations elsewhere.*

In conclusion, we have derived a reduced problem for
the electric field that may describe the current instabili-
ties in extrinsic semiconductors, both above and below
the impurity breakdown field (except for a narrow

J -
60 —
56 -
52 T T T T T
0 200 400 600 800
T
FIG. 6. Sample numerical calculation for a=1.15;

¢/1=0.79 (corresponding to 7.9 V/cm); pp=13.43. The verti-
cal scale has been multiplied by 1000, so that to convert to di-
mensional units (in mA) we have to multiply each unit of J in
the figure by 0.005 12. The absolute values of the current are ex-
tremely sensitive to the compensation ratio a. The frequency of
this oscillation is about 0.23 kHz, which as it happens with the
current, is too low compared with experiments. To obtain
values of the current and the field compatible with the experi-
mental ones, we must use a’s between 1.4 and 1.51 (see Ref. 28).
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diffusive boundary layer near the receiving contact). A
rough linear stability analysis of the corresponding steady
state shows that NDR is necessary for its linear instabili-
ty both for E>E, and for E <E, .. As a consequence,
instabilities below breakdown cannot appear as bifurca-
tions from the steady state. The shape of the current-
voltage characteristic j (E) for uniform steady states then
implies that the unique nonuniform steady state is unsta-
ble only between two critical voltages on the flat part of
Fig. 4. We have derived also a minimal length criterion
for the linear instability of the steady state and given a
qualitative explanation of the larger frequency of the
small amplitude current oscillations as compared to those
due to motion of domains. The following open problems
remain

Analysis of the current oscillations due to solitary-
wave dynamics (domains). This analysis should be the
equivalent of that for the classical model of the Gunn
effect in n-type GaAs.?’

Analysis of the bifurcation of oscillatory solutions at
the lower and upper critical fields, and of the relation be-
tween the bifurcating branches and the solitary-wave
branch.?*26

Precise comparison of these analyses with numerical
simulations of the rate equations® based upon more ac-
curate transport coefficients®® and with the experiments.

We hope to tackle these problems in future publica-
tions
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APPENDIX A: NONDIMENSIONALIZATION
OF GOVERNING EQUATIONS

We adopt the conventions of Ref. 14. The unknown
and independent variables are defined by

E=poE /v ,
P=p/d,
A=a,/d—1,

(A1)
J(1)=J  (T)/(edv,) ,

x =X/L,=ppedX /(evy) ,
7=T/T,=kdT .

Here L, is the typical length over which the electric field
varies, as evaluated from Poisson’s equation (1.1¢c). T, is
the characteristic time for impact ionization of impuri-
ties, as estimated from the rate equation (1.1a). The
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characteristic recombination time is also of the order of
T,. Insertion of (Al) into Egs. (1.1a)-(1.1c), (1.2) and
(1.3b) yields Egs. (1.4a)—(1.4c), (1.5) and (1.6), where

o= —pledV /(ev?) ,

pn =(epod)X(resistivity of contact X =nL) ,
n=0,1,

a=a/d >1 (compensation ratio) ,

8=pe dD /(ev?)=pddky T, /(ev?)~10"2,

I=pge dL /(ev;)=~10* ,

T/B=yT,=v/(kd)=10"1-1077,

B=T,/T,=exy/(euy)=~2.5X107° .

(A2)

Here we have indicated typical numerical values ap-
propriate to p-type Ge. B is the ratio between the dielec-
tric relaxation time T, =€/(e du,) and the impurity time
T,=1/(kyd).

APPENDIX B: LINEAR STABILITY
OF NONUNIFORM STEADY STATES
ON LONG SAMPLES

A linear stability analysis of the nonuniform steady
state on long enough samples may be performed by
adapting Kroemer’s for the classical model of the Gunn
effect in n-type GaAs.!° We shall consider case B of Sec.
IV B, so that E/p, and j(E) intersect on the two first
branches of the latter. For / >>1 and a not too close to 1
(say, a=1.4), the steady state consists of two plateaus

|
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joined by a transition region of width O(1)E is E,(J ;)
for 0<x <Ax, and E is either E(J) or E;(J_) for
Ax <x <1, according to whether

E (Uil <p<E;(T o)l , T MW i
or EZ(Jcrit ) <¢<E3(Jcrit )} ’ J‘L‘Icrit

Ax is given by (4.9a) or (4.9b), respectively. We now
show that the steady state becomes linearly unstable for
voltages such that the width of the interval for which
E (x) is in the NDR region of j(E) is small compared to
l. Let us start with a small voltage for which Ax is given
by (4.9a) and ignore the O (1) transition region as com-
pared to the width of the two plateaus. The solution of
the linear equation (5.2a) is

2(x)=poexp(—A,x /Ax)+[1—exp(—A,x /Ax)]
XAx /(AV,),

O0<x<Ax , (Bla)
e(x)=2e(Ax)exp[ —A,(x —Ax)/I]
+{1—exp[—Ay(x —Ax)/IN}I /(A V),
Ax<x<l, (Blb)
A=(Ae; eyl /(A+tc,) , (Blc)
Ay=(Ae;+cy)Ax /(A+c,) . (B1d)

The subscripts 1 and 2 in ¥ and A mean that the func-
tions of E that appear are to be evaluated at E,(J;, ) and
E,(J ;. ), respectively. Insertion of (B1) in the bias condi-
tion yields Z (A)=0, where

VIAZ(A) /1P=(A, /1 — {1—exp[ — A,(1—Ax /D ]} A, /Ax )WV, Z(A,) /] +1

—Ax/l+{1—exp[ —A{(1—Ax/D]}{[po+Ax /V, 1V, /I —1/A,} ,
Z(A)/1=(Ax Y [A+e A —1—poV,Ale " A—1)/Ax1/(V,IA?) .

From (B1d) we find (5.6) with A=A, and Ax instead of /.
Clearly, if A;>>Ax (A,<<Ax), then A~ —c,(E,)<0
[A~—(c4/c;)|;>0] and the steady state is linearly
stable (unstable). (B2) may now be used to prove that
A, >>Ax (A, <<Ax) follows from Ax <<Inl/ (Ax >>Inl).
A more precise analysis shows that the steady state is
linearly unstable if and only if Ax >1I,, where

l,~(V,/0,)nl, o,=|dj(E,)/dE| . (B3)
Substitution of this value of Ax in (4.9a) yields ¢,:
¢G~Ell+(E2—E1)( V2/0'2)lnl (J=Jcrit) . (B4a)

(B2a)
(B2b)

I

The zero of the impedance Z (1) with smallest |ReA,| is
reached at

A~0ol/V,, o,=dj(E,)/dE>0, (B5a)

Ay~=xim+In{(1+pyo, )V o,+V,0,)/(a3D)} . (B5b)

The same analysis for larger voltages such that the
second plateau is E =E,(J_;,) yields the critical voltage
¢, above which the steady state is again linearly stable.
We determine it from (4.9b) with Ax =1,, given by (B3):

bo~E3l —(E;—E,)\Vy/0,)nl (J=J_;). (B4b)
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