PHYSICAL REVIEW B VOLUME 54, NUMBER 3 15 JULY 1996-I

Coherent patterns and self-induced diffraction of electrons on a thin nonlinear layer
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Electron scattering on a thin layer where the potential depends self-consistently on the wave function has
been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped bright-
ening(darkening appears on the layer causing diffraction of the wave. Thus the spontaneously formed trans-
verse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities
result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction
patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a “beam,” splitting
in two “beams,” single or double traces with suppressed reflection or transmission,[®0d.63-
182996)07327-4

The spontaneous formation of spatial structugtterns  modeled bys potentials*'~*Among these results, we may
due to nonlinearity is well known for dissipative systemsmention the multiplicity of stable states found in different
driven away from equilibriunt.In solid state physics those physical situations for which tunneling is important: an array
patterns have been mostly studied in the regime governed tgf semimagnetic quantum ddts quantum molecular wiré,
classical macroscopic proces@eshere quantum coherence a doped superlattice formed by barriersi* Another is the
effects were not important. In this paper we predict the sponoscillatory instability of the flux transmitted through the non-
taneous formation ofuantum coherent nondissipative pat- linear layer:® It should be noted, however, that all these
ternsin semiconductor heterostructures with nonlinear proplesults are restricted to one-dimensional spatial supports,
erties. which means that the longitudinal and transverse degrees of

Since the Schidinger equation is linear, the nonlinearity motion are assumed to be decoupled. Disregarding that as-
appears in quantum Systems due to the many-body effecngption in this paper, we show that considering additional
and/or the coupling with the environment. In a mean-fieldspatial dimensions opens up the possibility of qualitatively
approximation this problem can be traced to the selfNeéw nonlinear phenomena such as the spontaneous formation
consistent Schidinger equation with the Hamiltonian Of spatial transverse patterns, which are quantum-
H=—(A22m)V2+V(r) + Vel |4(r)|?], where in addition ~Mechanically coherent.
to the external potentiaV/(r) the self-consistent potential ~ Consider a thin layer in they plane with the concen-
V¢ is introduced, representing a nonlinear response of théfated nonlinearity. We model the layer by using théunc-
medium® The potential V¢ depends on the probability tion, which simplifies greatly the calculations without modi-
|y(r)|? of the carrier to be located at When(in a weakly ~ fying the results qualitatively. Keeping in mind possible
nonlinear casgit is proportional to that probability, the re- Pattern formation and analogy with the optics, the layer can
sultant equation for a single-particle wave functiptr) is b€ thought of as a screen. The steady-state scattering prob-
the so-called nonlinear Schtinger equationNSE) with a  lem for the thiné layer is governed by the NSE:
cubic ternf encountered in different contexts of the solid 2
state physics{(i) the polaron problem,where the strong — —AY(r)+[A+B|y(r)|?18(2) p(r)=E(r). (1)
electron-phonon interaction deforms the lattice thereby pro- 2m
viding an attractive potentidl; (i) the magnetopolaron The external potentiah is allowed to be of both signs, i.e.,
problend in semimagnetic semiconductors, where the ex-A>0 if it is a barrier andA<O0 if it is a well. B is the
change interaction between the carrier spin and the magnetftrength of the nonlinear potentig<<0 for the attractive
impurities leads also to an effective attractive poteritial; andB>0 for the repulsive interaction. We do not specify the
(iii) Hartree-type interaction between electrons, giving a re€oncrete physical model, because our results could be appli-
pulsive potentiat® and other$. cable to any of the above-mentioned systems, although the

Motivated by the great progress in heterostructure fabrimost feasible candidates for the attractive case are be-
cation, some important results have been obtained recently lireved to be semimagnetic heterostructures like CdTe/
the framework of the cubic NSE for the situations when theCd,Mn,_,Te and CdTe/HgCd,_,MnTe, where both the
nonlinearities are concentrated in thin semiconductor layerbeightA of the barrier and the strengt can be varied by
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choosing the alloy composition. In additioA,can be tuned @

by an external magnetic field. The expressionsAcandB

can be found elsewhefeThe repulsive case is an idealiza- 1.0 |

tion of the situation considered in Ref. 10; see Ref. 12.
We seek the solution in the form

0.8
ae*?+b(x,y,z) e ?,  z<0
X,Y,2)= : 2

Vy.2) c(x,y,2)e"?, z>0, @ S o6
where the amplitude of the incident wave is fixedreal,
and the electron enerdy=7%2k?/2m. We assume that there 0.4 f
is no current inflow along the screéime only inflow into the =
system is fronz= — ). Thus only those solutions satisfying 02 [
the condition of zero inflow az=0, x,y— oo will be con-
sidered. 0.0 ,

It is convenient to writ€2) and(1) in dimensionless form -12 -10

by means of the definitiong=2kx, y=2ky, Z=kz,
b=b/a, T=c/a. Insertion of(2) into Eq.(1) for z#0 yields

AJ_B-I- % &;;B—iﬂ;g= 0, Z<o, 3

A C+ % 953C+id3€=0, Z>0.
By using the continuity of the wave functiaf, one gets at
z=0

3 T— D4 2(E-1)=2(at BEIRTE, (@ ¢

and A, b=A,T. Here a=mA/(%%k) and B=mBa/(#2k).
Equations(3) and (4) have spatially uniform solutiong=
&+i¢ such thatl = — aé— BE2, [C|%?=¢, and

B?E3+2aBE%+ (a?+1)é—1=0. (5

A straightforward analysis of this equation demonstrates that
there is only one real root fax?<3 and there are three real
roots under the conditions®>3, a3<0, andg~<B<pB*
with 87 =2[ ¥ (a®—3)%?— a®—9a]. Thus multiple solu-
tions are expected for two cases: the barriec>Q) with
attractive nonlinearity §<0) (case.4) and the quantum
well (e<<0) with repulsive nonlinearity 8>0) (caseR).
Taking B as a control parameter these solutions are depicte
in Fig. _1 for differenta. Notice that we obtain up to three T=¢+il, =&+ &KY),  (=lo+L(XY), where
coexisting uniform solutions for different values af: . <¢ '+ <¢,. The richest distinguished limit corresponds
Z-shaped curves &B) (f «>+3) and S-shaped to havingy=25+0(6%?), ¢,,£,=0(\/3), X.§=0(5"1?),
(V3<a<2) or loop-shapedif a>2) curves{(B). At  andz=0(5"?). Inserting this ansatz into Eg), the terms
a=2 there is a cusp of the maximum of tliéB) curve. The 8‘2“2‘5 and d55¢ areO(6%?) and can be ignored when com-

peaks in F[g.zﬂa) correspond to maxima of the transmission e with the others, which a@(5%3). Inserting the result
for which [C[*=¢=1 and B=—«. Since B=a®, multiple o (4), we find
solutions exist on a certain interval of incident wave ampli- ’

FIG. 1. Real(a) and imaginary(b) parts of the transmitted am-
plitude T as functions ofg for a uniform solution and different
values ofa. Only caseA is shown. The cas® can be obtained by

ﬁaplacingaH —a, B——B.

tudes for any strength of the nonlinearBy The threshold Ixxért (9W§1=(5/\/§)§1—% §+(\/§/4)(f-17— )
valuesa=mA/k#A?==* /3 for multiplicity of uniform solu- 5

tions can be achieved by varying the barrier heighell +0(8%%), (6a)
depth and/or the energy of the incident wave. Three uniform =+ 51/\/§+ 0(5) (6b)

solutions coalesce at the ftricritical parameter valugs . .

+ 3, Bo=7813/9, £,=3/4, {y="T \/3/4. Hereafter we use Notice that our ansatz corresponds to weakly nonlinear per-

the upper sign for casd and the lower sign for cas®. turba}lons of unlforr_nllsoluuons varying on a large spatial
We shall perform now a small-amplitude perturbationscalex:_\/ikxz0(5 _ )>1. The typical transverse length

analysis of Egs(3) and (4) near the tricritical point. As a ©Ver which our solutions vary is thus much larger than the

result we will find simple amplitude equations that will be Wavelength . e~ a1

solved in two particular cases of intere&) y-independent _ With the substitutions:§; =336, x=3"5"""X,

solutions, andb) axisymmetric solutions. y=3Y45"12y Eq. (6a can be written in the simpler form
Let a=ag+d8, B=BeTy with >0, y>0, and dyxu+dyyu=u—2u3+u+0(s), u=3 Y5 343y-5)

S8,y <1. We look for small nonuniform solutions: =0O(1). Wereport here only the result$or y-independent
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FIG. 2. Density plots for the wave function intensities created by scattering off the self-induced nonuniform pattern on the screen at
Z=0 with attractive(a) or repulsive(b) nonlinearities. Whité€black) color corresponds to the maximuiminimum) of the intensity for the
soliton solution on the screemE 1), and vice versa for the antisoliton solutiop=—1).

solutions and for the axisymmetric caseorresponding to linearly stable when time evolution is considered subject to

the most symmetrical situatiop= %5 (u=0), where explicit the boundary conditions discussed earlier.

formulas can be obtained easily. The results for the general The amplitudes of the transmitted and reflected waves

nonsymmetric case will be published elsewhere. outside the screen can be found fr¢8) using as the bound-
(@) Two-dimensional solutions depending on one trans-ary conditions their values a&=0 and ignoring the small

versal coordinate: li=u(X) (two-dimensional solutions of termsds5¢ and 37'253

the full problem depending on only one transversal coordi-

nate, the parameter-free equatiogu=u—_2u® can be in-

tegrated once yielding the resuléyu)?=u?—u*+C. This m

equation admits nonuniform solutions satisfying the condi-

tion of zero flux asX— o0 only if C=0. In this case we and the expression fd]( X,Z) is the same once is replaced

obtain the solutionsi= 7sechi—X,), with =1 for the bY —Z , _ , N

soliton and »=—1 for the antisoliton. Next we choose In our two-dimensional2D) problem the intensities of
X,=0. Finally, using relatior{6b) our solution for the trans- the reflected and transmitted waves are nonuniform in space
mitted and reflected amplitudes on the screen will be in contrast to the 1D progalem, where they are constant.
Denoting [C(X,2)|1?=v {1+ ¥V (X,2)}, [b(XZ)|2
=¥o1+W,(XZ)}, and using forg(X,0), b(X,0) the
soliton-type solutiong7), we obtain¥?=3/4, ¥°=1/4. The
nonuniform parts of the intensities are given by

X Z)= c(xO el F-XV Iy (g)

TX) = \/7§e:i77/6[1+ \/§7,)\secm)\3(')eii”/3], (78

— 1 .
_ _ T AFiwl3rq T\ aFiml6 —_ o~
b(¥)=— e ™1 3\/3p\secliaX)e™ ™, (7b) - oo [ F=X2
U4 s1i2 : (x2)= N =1 "o
whereA =3 %5 and the upper and lower signs refer to w(z|J - 4z |
the casesd and R, respectively. On the screen=0 the X sectin® /)dX 9

difference between the casdsandR lies only in the phase
of the wave function and not in the intensitis(X)|2=2  whereo,=—3, o,=\/3, and the terms-\? were dropped.
[1+37\sechdpX)], |b(“)|2— 11— 3\/—n)\sechQ\x)] The phasep in the argument of cosine is different for the
(the small terms-\? are dropped consistently with our scal- attract|ve and repulsive nonllneantles ca.ge b =17,
ing). The different phase factors give rise to drastic differ- ¢, = — 57, caseR: ¢, = — 7, ¢, = — 7.

ences in the wave function outside the screen, as will be Spatial distributions of the wave intensities are obtained
shown below. We have also checked that the solutions arey numerical integration of Eq9) and presented in Fig. 2 in
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terms of the scaled coordinat¥s=\X, Z=4\%Z. The off-
screen wave intensities are shown starting from certain non-
zero values oZ. The wave intensity on the screen is shown
as a thin strip in the middle of Figs(& and Zb). The results
can be interpreted as follows. The uniform incident flow
spontaneously produces a nonuniform soliton-type pattern on
the screen and is then diffracted by it due to the nonlinear
feedback in the equations. In particular, for the soliton solu-
tion (»=1) we observeocal self-brighteningof the trans-
mitted wave with simultaneouscal suppressiorof the re-
flected wave(Fig. 2). The diffraction pattern is crucially
determined by the value of the phase fagfor. For the case

A the transmitted wave is focused into a “beam’ of higher
intensity with a maximum outside the screerZat 1.7 [Fig.

u

2(a)], whereas for the cas® it is defocused and it “splits”
into two “beams” [Fig. 2(b)]. Additional support for the

FIG. 3. Axisymmetric solutionsS; for the transmitted ampli-
tude on the screen whan=1,2,3. Recall tha8;=*5; .

importance of the phase factor is provided by the asymptotic

behavior of the integral(9) in the remote zonezZ>1,
2X<Z:

—~—~ v X
W, (X,2)~no ECO ﬁ

In the transverse direction the local maxitminima) of the
intensities are determined by the condition
X 2/4[Z |+ ¢;=mm, m=0,£1,.... Forinstance,¢,; >0
for caseA, and the cosine iri10) reaches its maximum at
X=0 providing a transmitted “beam” along the axes.

¥ 2

+ ¢:t) } (10

¢, <0 for caseR, and the cosine is largest on the parabola

pinning the soliton, boundary conditions, past history, and so
on.

(b) Two-dimensional axisymmetric solutions: For this ge-
ometry, u=u(R), R?=X?+Y2, and the parameter-free
equation becomesgrru+ (1/R)dgu=u—2u®. There are in-
finitely many solutions that satisfy our boundary conditions
u(e) =0 andug(0)=ug(«) =0. We denote them b, for
the soliton cas¢u(0)>0] and S, for the antisoliton case
[u(0)<0], where the subscript=0,1, ... is thenumber of
zeros ofS, as shown in Fig. 3. TheB, =—S .

In conclusion, spontaneous formation of spatial transverse

Z=(3/7m)X ? yielding two transmitted “beams” as in Fig. natterns, which are quantum-mechanically coherent, is ex-
2(b). The behavior of the reflected wave is also nontrivial: pected to occur in semiconductor heterostructures with a thin
for caseA the reflected pattern contains “split traces". the nhonlinear layer. Self-diffraction of the electron wave on the
suppressed reflection forms the parabwia(3/57)X “ [Fig.  yransverse patterns gives rise to interesting phenomena such

2(a)], whereas for cas® the reflection is suppressed within 5¢ self-brightening or darkening of the transmitted wave,
a single tracdFig. 2(b)]. It should be noted, however, that

for the antisoliton solution f=—1) the maxima and
minima are interchange@vith respect to the soliton solu-

beam splitting, etc.
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