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Electron scattering on a thin layer where the potential depends self-consistently on the wave function has
been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped bright-
ening~darkening! appears on the layer causing diffraction of the wave. Thus the spontaneously formed trans-
verse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities
result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction
patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a ‘‘beam,’’ splitting
in two ‘‘beams,’’ single or double traces with suppressed reflection or transmission, etc.@S0163-
1829~96!07327-4#

The spontaneous formation of spatial structures~patterns!
due to nonlinearity is well known for dissipative systems
driven away from equilibrium.1 In solid state physics those
patterns have been mostly studied in the regime governed by
classical macroscopic processes,2 where quantum coherence
effects were not important. In this paper we predict the spon-
taneous formation ofquantum coherent nondissipative pat-
terns in semiconductor heterostructures with nonlinear prop-
erties.

Since the Schro¨dinger equation is linear, the nonlinearity
appears in quantum systems due to the many-body effects
and/or the coupling with the environment. In a mean-field
approximation this problem can be traced to the self-
consistent Schro¨dinger equation with the Hamiltonian
H52(\2/2m)¹21V(r )1Veff@ uc(r )u2#, where in addition
to the external potentialV(r ) the self-consistent potential
Veff is introduced, representing a nonlinear response of the
medium.3 The potentialVeff depends on the probability
uc(r )u2 of the carrier to be located atr . When~in a weakly
nonlinear case! it is proportional to that probability, the re-
sultant equation for a single-particle wave functionc(r ) is
the so-called nonlinear Schro¨dinger equation~NSE! with a
cubic term4 encountered in different contexts of the solid
state physics:~i! the polaron problem,5 where the strong
electron-phonon interaction deforms the lattice thereby pro-
viding an attractive potential;6 ~ii ! the magnetopolaron
problem7 in semimagnetic semiconductors, where the ex-
change interaction between the carrier spin and the magnetic
impurities leads also to an effective attractive potential;8,9

~iii ! Hartree-type interaction between electrons, giving a re-
pulsive potential,10 and others.4

Motivated by the great progress in heterostructure fabri-
cation, some important results have been obtained recently in
the framework of the cubic NSE for the situations when the
nonlinearities are concentrated in thin semiconductor layers

modeled byd potentials.8,11–13Among these results, we may
mention the multiplicity of stable states found in different
physical situations for which tunneling is important: an array
of semimagnetic quantum dots,8 a quantum molecular wire,11

a doped superlattice formed byd barriers.12 Another is the
oscillatory instability of the flux transmitted through the non-
linear layer.13 It should be noted, however, that all these
results are restricted to one-dimensional spatial supports,
which means that the longitudinal and transverse degrees of
motion are assumed to be decoupled. Disregarding that as-
sumption in this paper, we show that considering additional
spatial dimensions opens up the possibility of qualitatively
new nonlinear phenomena such as the spontaneous formation
of spatial transverse patterns, which are quantum-
mechanically coherent.

Consider a thin layer in thexy plane with the concen-
trated nonlinearity. We model the layer by using thed func-
tion, which simplifies greatly the calculations without modi-
fying the results qualitatively. Keeping in mind possible
pattern formation and analogy with the optics, the layer can
be thought of as a screen. The steady-state scattering prob-
lem for the thind layer is governed by the NSE:

2
\2

2m
Dc~r !1@A1Buc~r !u2#d~z!c~r !5Ec~r !. ~1!

The external potentialA is allowed to be of both signs, i.e.,
A.0 if it is a barrier andA,0 if it is a well. B is the
strength of the nonlinear potential:B,0 for the attractive
andB.0 for the repulsive interaction. We do not specify the
concrete physical model, because our results could be appli-
cable to any of the above-mentioned systems, although the
most feasible candidates for the attractive case are be-
lieved to be semimagnetic heterostructures like CdTe/
CdxMn12xTe and CdTe/HgxCd12xMnTe, where both the
heightA of the barrier and the strengthB can be varied by
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choosing the alloy composition. In addition,A can be tuned
by an external magnetic field. The expressions forA andB
can be found elsewhere.8 The repulsive case is an idealiza-
tion of the situation considered in Ref. 10; see Ref. 12.

We seek the solution in the form

c~x,y,z!5H aeikz1b~x,y,z!e2 ikz, z,0

c~x,y,z!eikz, z.0,
~2!

where the amplitudea of the incident wave is fixed~real!,
and the electron energyE5\2k2/2m. We assume that there
is no current inflow along the screen~the only inflow into the
system is fromz52`). Thus only those solutions satisfying
the condition of zero inflow atz50, x,y→6` will be con-
sidered.

It is convenient to write~2! and~1! in dimensionless form
by means of the definitionsx̃5A2kx, ỹ5A2ky, z̃5kz,

b̃5b/a, c̃5c/a. Insertion of~2! into Eq.~1! for zÞ0 yields

D'b̃1 1
2 ] z̃ z̃b̃2 i ] z̃b̃50, z̃,0,

D'c̃1 1
2 ] z̃ z̃c̃1 i ] z̃c̃50, z̃.0.

~3!

By using the continuity of the wave functionc, one gets at
z50

] z̃ c̃2] z̃ b̃12i ~ c̃21!52~a1buc̃ u2!c̃, ~4!

andD'b̃5D'c̃. Herea5mA/(\2k) and b5mBa2/(\2k).
Equations~3! and ~4! have spatially uniform solutionsc̃5
j1 i z such thatz52aj2bj2, uc̃ u25j, and

b2j312abj21~a211!j2150. ~5!

A straightforward analysis of this equation demonstrates that
there is only one real root fora2,3 and there are three real
roots under the conditionsa2.3, ab,0, andb2,b,b1

with b75 2
27@7(a223)3/22a329a#. Thus multiple solu-

tions are expected for two cases: the barrier (a.0) with
attractive nonlinearity (b,0) ~caseA) and the quantum
well (a,0) with repulsive nonlinearity (b.0) ~caseR).
Takingb as a control parameter these solutions are depicted
in Fig. 1 for differenta. Notice that we obtain up to three
coexisting uniform solutions for different values ofa:
Z-shaped curves j(b) ~if a.A3) and S-shaped
(A3,a,2) or loop-shaped~if a.2) curves z(b). At
a52 there is a cusp of the maximum of thez(b) curve. The
peaks in Fig. 1~a! correspond to maxima of the transmission
for which uc̃ u25j51 and b52a. Sinceb}a2, multiple
solutions exist on a certain interval of incident wave ampli-
tudes for any strength of the nonlinearityB. The threshold
valuesa5mA/k\256A3 for multiplicity of uniform solu-
tions can be achieved by varying the barrier height~well
depth! and/or the energy of the incident wave. Three uniform
solutions coalesce at the tricritical parameter valuesa05
6A3, b0578A3/9, j053/4, z057A3/4. Hereafter we use
the upper sign for caseA and the lower sign for caseR.

We shall perform now a small-amplitude perturbation
analysis of Eqs.~3! and ~4! near the tricritical point. As a
result we will find simple amplitude equations that will be
solved in two particular cases of interest:~a! y-independent
solutions, and~b! axisymmetric solutions.

Let a5a06d, b5b07g with d.0, g.0, and
d,g !1. We look for small nonuniform solutions:

c̃5j1 i z, j5j01j1( x̃,ỹ), z5z01z1( x̃,ỹ), where
j1!j0 , z1!z0 . The richest distinguished limit corresponds
to havingg5 4

3d1O(d3/2), j1 ,z15O(Ad), x̃,ỹ5O(d21/2),
andz̃5O(d21). Inserting this ansatz into Eqs.~3!, the terms
] z̃ z̃b̃ and ] z̃ z̃c̃ areO(d5/2) and can be ignored when com-
pared with the others, which areO(d3/2). Inserting the result
into ~4!, we find

] x̃ x̃j11] ỹ ỹj15~d/A3!j12
32
27j1

31~A3/4!~ 3
4g2d!

1O~d5/2!, ~6a!

z156j1 /A31O~d!. ~6b!

Notice that our ansatz corresponds to weakly nonlinear per-
turbations of uniform solutions varying on a large spatial
scalex̃5A2kx5O(d21/2)@1. The typical transverse length
over which our solutions vary is thus much larger than the
wavelength 1/k.

With the substitutions:j15
3
43

1/4d1/2u, x̃531/4d21/2X,

ỹ531/4d21/2Y, Eq. ~6a! can be written in the simpler form
]XXu1]YYu5u22u31m1O(d), m5321/4d23/2( 34g2d)
5O(1). We report here only the results~for y-independent

FIG. 1. Real~a! and imaginary~b! parts of the transmitted am-
plitude c̃ as functions ofb for a uniform solution and different
values ofa. Only caseA is shown. The caseR can be obtained by
replacinga→2a, b→2b.
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solutions and for the axisymmetric case! corresponding to
the most symmetrical situationg5 4

3d (m50!, where explicit
formulas can be obtained easily. The results for the general
nonsymmetric case will be published elsewhere.

~a! Two-dimensional solutions depending on one trans-
versal coordinate: Ifu5u(X) ~two-dimensional solutions of
the full problem depending on only one transversal coordi-
nate!, the parameter-free equation]XXu5u22u3 can be in-
tegrated once yielding the result (]Xu)

25u22u41C. This
equation admits nonuniform solutions satisfying the condi-
tion of zero flux asX→6` only if C50. In this case we
obtain the solutionsu5hsech(X2X0), with h51 for the
soliton and h521 for the antisoliton. Next we choose
X050. Finally, using relation~6b! our solution for the trans-
mitted and reflected amplitudes on the screen will be

c̃~ x̃!5
A3
2
e7 ip/6@11A3hlsech~l x̃!e6 ip/3#, ~7a!

b̃~ x̃!52
1

2
e6 ip/3@123A3hlsech~l x̃!e7 ip/6#, ~7b!

wherel5321/4d1/2 and the upper and lower signs refer to
the casesA andR, respectively. On the screenz50 the
difference between the casesA andR lies only in the phase
of the wave function and not in the intensities:uc̃( x̃ )u25 3

4

@11A3hlsech(l x̃ )#, ub̃( x̃ )u25 1
4@123A3hlsech(l x̃ )#

~the small terms;l2 are dropped consistently with our scal-
ing!. The different phase factors give rise to drastic differ-
ences in the wave function outside the screen, as will be
shown below. We have also checked that the solutions are

linearly stable when time evolution is considered subject to
the boundary conditions discussed earlier.

The amplitudes of the transmitted and reflected waves
outside the screen can be found from~3! using as the bound-
ary conditions their values atz50 and ignoring the small
terms] z̃ z̃c̃ and] z̃ z̃b̃:

c̃~ x̃,z̃!5
1

A4p i z̃
E

2`

`

c̃ ~ x̃,0!ei ~ x̃2 x̃8!2/~4z̃!dx̃, ~8!

and the expression forb̃( x̃,z̃ ) is the same oncez̃ is replaced
by 2 z̃.

In our two-dimensional~2D! problem the intensities of
the reflected and transmitted waves are nonuniform in space
in contrast to the 1D problem, where they are constant.
Denoting uc̃( x̃,z̃ )u25C t

0$11C t( x̃,z̃)%, ub̃( x̃,z̃ )u2

5C r
0$11C r( x̃,z̃ )%, and using for c̃( x̃,0), b̃( x̃,0) the

soliton-type solutions~7!, we obtainC t
053/4,C r

051/4. The
nonuniform parts of the intensities are given by

C r ,t~ x̃,z̃!5h
s r ,tl

Apuz̃u
E

2`

`

cosF ~ x̃2 x̃ 8!2

4uz̃ u
1f r ,t

6 G
3sech~l x̃ 8!dx̃ 8, ~9!

wheres r523, s t5A3, and the terms;l2 were dropped.
The phasef in the argument of cosine is different for the
attractive and repulsive nonlinearities: caseA: f t

15 1
12p,

f r
152 5

12p; caseR: f t
252 7

12p, f r
252 1

12p.
Spatial distributions of the wave intensities are obtained

by numerical integration of Eq.~9! and presented in Fig. 2 in

FIG. 2. Density plots for the wave function intensities created by scattering off the self-induced nonuniform pattern on the screen at
Z50 with attractive~a! or repulsive~b! nonlinearities. White~black! color corresponds to the maximum~minimum! of the intensity for the
soliton solution on the screen (h51), and vice versa for the antisoliton solution (h521).
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terms of the scaled coordinatesX5l x̃, Z54l2z̃. The off-
screen wave intensities are shown starting from certain non-
zero values ofZ. The wave intensity on the screen is shown
as a thin strip in the middle of Figs. 2~a! and 2~b!. The results
can be interpreted as follows. The uniform incident flow
spontaneously produces a nonuniform soliton-type pattern on
the screen and is then diffracted by it due to the nonlinear
feedback in the equations. In particular, for the soliton solu-
tion (h51! we observelocal self-brighteningof the trans-
mitted wave with simultaneouslocal suppressionof the re-
flected wave~Fig. 2!. The diffraction pattern is crucially
determined by the value of the phase factorf6. For the case
A the transmitted wave is focused into a ‘‘beam’’ of higher
intensity with a maximum outside the screen atZ'1.7 @Fig.
2~a!#, whereas for the caseR it is defocused and it ‘‘splits’’
into two ‘‘beams’’ @Fig. 2~b!#. Additional support for the
importance of the phase factor is provided by the asymptotic
behavior of the integral~9! in the remote zoneZ@1,
2X!Z:

C r ,t~ x̃,z̃!'hs r ,tA p

uz̃ u
cosS x̃ 2

4uz̃ u
1f r ,t

6 D . ~10!

In the transverse direction the local maxima~minima! of the
intensities are determined by the condition
x̃ 2/4uz̃ u1f r ,t

6 5pm, m50,61, . . . . For instance,f t
1.0

for caseA, and the cosine in~10! reaches its maximum at
x̃50 providing a transmitted ‘‘beam’’ along the axes.
f t

2,0 for caseR, and the cosine is largest on the parabola
z̃5(3/7p) x̃ 2 yielding two transmitted ‘‘beams’’ as in Fig.
2~b!. The behavior of the reflected wave is also nontrivial:
for caseA the reflected pattern contains ‘‘split traces’’: the
suppressed reflection forms the parabolaz̃5(3/5p) x̃ 2 @Fig.
2~a!#, whereas for caseR the reflection is suppressed within
a single trace@Fig. 2~b!#. It should be noted, however, that
for the antisoliton solution (h521) the maxima and
minima are interchanged~with respect to the soliton solu-
tion!, the ‘‘beams’’ become the suppressed traces and vice
versa. Which type of solution~self-brightening or self-
darkening of the transmission! will be realized in practice
depends on additional conditions: type of the imperfections

pinning the soliton, boundary conditions, past history, and so
on.

~b! Two-dimensional axisymmetric solutions: For this ge-
ometry, u5u(R), R25X21Y2, and the parameter-free
equation becomes]RRu1(1/R)]Ru5u22u3. There are in-
finitely many solutions that satisfy our boundary conditions
u(`)50 anduR(0)5uR(`)50. We denote them bySn

1 for
the soliton case@u(0).0# andSn

2 for the antisoliton case
@u(0),0#, where the subscriptn50,1, . . . is thenumber of
zeros ofSn

6 as shown in Fig. 3. ThenSn
252Sn

1 .
In conclusion, spontaneous formation of spatial transverse

patterns, which are quantum-mechanically coherent, is ex-
pected to occur in semiconductor heterostructures with a thin
nonlinear layer. Self-diffraction of the electron wave on the
transverse patterns gives rise to interesting phenomena such
as self-brightening or darkening of the transmitted wave,
beam splitting, etc.

This work has been supported by the DGICYT Grants No.
PB92-0248 and No. PB94-0375, and by the EU Human
Capital and Mobility Programme contract ERB-
CHRXCT930413. O.M.B. acknowledges support from the
Ministerio de Educacio´n y Ciencia of Spain.

*Present address: Dept. Fisica Fonamental, Universitat de
Barselona, Av. Diagonal 647, E-08028 Barcelona, Spain.
1M. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851 ~1993!.
2Nonlinear Dynamics and Pattern Formation in Semiconductors
and Devices, edited by F.-J. Niedernostheide~Springer-Verlag,
Berlin, 1995!.

3J. Callaway,Quantum Theory of the Solid State, 2nd ed.~Aca-
demic, San Diego, 1991!.

4See, e.g., the review: V. G. Makhankov and V. K. Fedyanin,
Phys. Rep.104, 1 ~1984!, and references therein.

5M. F. Deigen and S. I. Pekar, Zh. E´ksp. Teor. Fiz.21, 803~1951!;
S. I. Pekar,Untersuchungen uber die Elektronentheorie der Kri-
stalle ~Akademie-Verlag, Berlin, 1954!; V. A. Kochelap, V. N.
Sokolov, and B. Yu. Vengalis,Phase Transitions in Semicon-
ductors with Deformation Electron-Phonon Interaction
~Naukova Dumka, Kiev, 1984!.

6M. A. Smondyrev, P. Vansant, F. M. Peeters, and J. T. Devreese,
Phys. Rev. B52, 11 231~1995!.

7J. K. Furdyna, J. Appl. Phys.64, R29 ~1988!.
8P. Hawrylak, M. Grabowski, and J. J. Quinn, Phys. Rev. B44,
13 082~1991!.
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