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Abstract

A two-timescale asymptotic method has been introduced to analyze the multimodal mean-tield Kuramoto model of oscilla-
tor synchronization in the high-frequency limit. The method allows to uncouple the probability density in ditferent components
corresponding to the different peaks of the oscillator frequency distribution. Each component evolves towards a stationary
state in a comoving frame and the overall order parameter can be reconstructed by combining them. Synchronized phases ure
a combination of traveling waves and incoherent solutions depending on parameter values. Our results agree very well with
direct numerical simulations of the nonlinear Fokker—Planck equation for the probability density. Numerical results have been
obtained by finite differences and a spectral method in the particular case of bimodal (symmetric and asymmetric) frequency
distribution with or without external field. We also recover in a very casy and intuitive way the only other known analyt cal
results: those corresponding to reflection-symmetric bimodal frequency distributions near hiturcation points. Copyright ©
1998 Elsevier Science B.V.
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1. Introduction

In recent years mathematical modeling and analysis of synchronization phenomena received increased attan-
tion because of its occurrence in quite different fields. such as solid state physics [1-3]. biological systems [4-7],
chemical reactions |8]. etc. These phenomena can be modeled in terms of populations of interacting, nonlinecrly
coupled oscillators as first proposed by Winfree |[4]. While the dynamic behavior of a small number of oscillators
can be quite interesting [9]. here we are concerned with synchronization as a collective phenomenon for large
populations of interacting oscillators [5]. Then we can describe populations of oscillators interacting via simple
couplings (e.g.. all-to-all. mean-field couplings) by means of kinetic equations for one-oscillutor densities [5.10.11].
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Many recent studies of synchronization phenomena combine numerical simulations with linear stability and bifur-
cation analyses of particular (stable) incoherent and synchronized states [ | I-14]. These works have described the
onset of synchronized phases and, near degenerate bifurcation points, synchronized phases from their beginning
1o their end in the corresponding bifurcation diagram [15]. In this paper we introduce a high-frequency singular
perturbation method which describes tin a conveniently analytical manner) synchronized phases and their stability
far from bifurcation points. The method nicely agrees with the results of numerical simulations. Our philoso-
phy in the present paper is simple: we have searched for a tractable asymptotic limit whose analysis captures
most of the relevant physics. In other parameter regions the results provided by the high-frequency limit qualita-
tively hold and are useful to understand complementary approaches (e.g.. numerical simulations and bifurcation
results).

These ideas may be made concrete in a simple model put forth by Kuramoto [16] and Shinomoto and Kuramoto
[17] (see also [5,18]). It consists of a population of coupled phase oscillators, 6;(z). having natural frequencies w;
distributed with a given probability density g(w), and subject to the action of an external field #; which is distributed
with a probability density f(/),

N
by = wp + &) —hy sint + Y Kysin@ —6). j=1.. N. ()
[=1

Here &; are independent white noise processes with expected values
(&) =0. (E(OEE)) =2D8(t —1') 8. )

In the absence of external field and white noise, each oscillator tries to run independently at its own frequency
while the coupling tends to synchronize it to all the others. When the coupling is sufficiently weak. the oscillators
run incoherently whereas beyond a certain threshold collective synchronization appears spontaneously. So far,
several particular prescriptions for the matrix K;; have been considered. For instance. Kj; = K > 0 only when
[j =] = 1, and Kj; = 0 otherwise (next-neighbor coupling) [19]; K;; = K/N > 0 (mean-field coupling) [8,16];
hierarchical coupling [20]; random long-range coupling [21-23] or even state dependent interactions [24]. In the
mean-field case. the model (1) and (2) can be written in a convenient form by defining the (complex-valued) order
parameter

N
W 1 -
re’ = N E Sl (3)

/=1
Here |r(7)| measures the phase coherence of the oscillators. and ¥/ (f) measures the average phase. Then Eq. (1)
reads

0/ =w; — h;sinf; + Krsin(y —6;) + &), j=12.... N. 4)

In the limit of infinitely many oscillators, N — oc, a nonlinear Fokker—Planck equation (NLFPE) was derived
[10.11] for the one-oscillator probability density, p(6.1, w. h),
570, 'd:p

9
=L _ L.
5 = Paer T g ) (3)

the drift-term being given by

A t.w) = w—hsin@ + Krsin{y —6), (6)
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and the order parameter amplitude by

2n x4

ret? :/ [ /cin(H.l.(u.lz)g((u) Fhy d6 dew dh. 7
0

- >
The probability density is required to be 27 -periodic as a function of # and normalized according to

2

/p((‘),[.(u./l)dé': 1. (8)
[§]

Mean-field models such as those described above were studied, e.g.. by Strogatz and Mirollo [ 11} in the absence
of external field and for a unimodal (g(w) is non-increasing for @ > 0) frequency distribution, g(w). having
reflection symmetry, g(—w) = g{w). In [11]. the authors showed that for K smaller than a certain value X, the
incoherent equiprobability distribution. py = 1/(27), is linearlv stable, and linearly unstable for K > K.. As
D — 0+. the incoherence solution is still unstable for K > K. (= 2/m7g(0) at D = 0, but it is neutrally stable
for K < K.: the whole spectrum of the equation linearized about pg collapses to the imaginary axis. In [12], the
nonlinear stability issue was addressed. and the case of a reflection-symmetric bimodal frequency distribution was
considered (g(w) is even and it has maxima at @ = =awyp). In this case, new bifurcations appear. and bifurca ing
synchronized states have been asymptotically constructed in the neighborhood of the bifurcation values of the
coupling strength. The nonlinear stability properties of such solutions were also studied for the explicit discrete
example ¢(w) = %Ié)‘(w —wg) + 8w+ mph], et [12]. A complete bifurcation study taking into account the reflec:ion
symmetry of g(w) was carried out by Crawford [13]. Similar results were obtained by Okuda and Kuramoto } 14|
in the related case of mutual entrainment between populations of coupled oscillators with different frequencies.
Furthermore, a two-parameter bifurcation analysis near the tricritical point (at which bifurcating stationary and
oscillatory solution branches coalesce) alfows us to visualize a global bifurcation diagram in which oscillazory
solution branches may be calculated analytically from their onset to their end | 15]. The effect of an external field
on Kuramoto models has been analyzed in [17.25,26].

In this paper we shall illustrate our high-frequency perturbation method by applying i1 to the generalized mean-
field Kuramoto model (5)—(&). We shall assume that the frequency distribution is multimedal in the high-frequency

limit: g(w) has m maxima located at w82, 1 = ... ., m. where wy — oc. Then ¢(w)dw tends to the | mit
distribution
m
r2)d2 = w602 - 2)do. (9)
(=1
with

m

Za/:l and Q:ﬁ.

Wy
=1 ()

independently of the shape of g(w) as wy — oc. Then g(w) dw and [7(82) d£2 may be used interchangeably when
calculating any moment of the probability density (including of course the all-important order parameter 17)).
Thus any frequency distribution is equivalent to a discrete multimodal distribution in the high-frequency limit. The
discrete symmetric bimodal distribution considered in [12,15] corresponds tom = 2, £2; = (- =41=1.2
We shall show that the oscillator probability density splits into m components. each contributing a wave rotating
with frequency £2;wy to the order parameter. The envelope of cach component evolves to a stationary state as the
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time elapses. Thus our method yields analytical expressions for the probability density and the order parameter
during the transients toward synchronized (or incoherent) phases, which agree with direct numerical simulations
of the NLFPE. Since it is not a small-amplitude expansion, our method is valid well inside the regions of stable
synchronized phases in the phase diagram. far from bifurcation points. Of course we have derived the method in
the limit wg ~—> oo, but comparison with numerical simulations shows that wy = 7 is already close to infinity for
all practical purposes.

Our numerical calculations have been carried out by means of finite difference schemes and by using a spectral
method which generates a hierarchy of ordinary differential equations for moments of the probability density which
include the order parameter. This method is equivalent to an expansion of the probability density in a Fourier series
and it could in principle be used to reconstruct it. The moment hierarchy was derived directly from Egs. (1) and (2) by
Pérez Vicente and Ritort [27]. They assumed that arithmetic means converged to ensemble averages in the limit N —
oc (keeping 1 = O(1)), which was justified in [ 10]. From the moment hierarchy, Pérez Vicente and Ritort [27] also
derived a nonlinear kinetic equation for amoment-generating function Y(#. v. ) = f e p(f, t: w) g(w) dw, which
is related to functional-equation formulations of equilibrium statistical mechanics [28] and fluid turbulence [29,30).

The rest of the paper consists of a description of our method of multiple scales in Section 2. comparison with
numerical results in Section 3, and our conclusions in Section 4.

2. Method of multiple scales

The high-frequency limit of the NLFPE can be analyzed by means of a method of multiple scales. Let us change
variables to a comoving frame and therefore rewrite the equation as

a_p_Da3p U p

= - — . 10
at ap- ap (o)
. . . 2 ) 2
U=Krsin(yy — 8 ~wt)—hsin(f+owt)=Krsin{y —B— —t}—hsin{ g+ —1]). (th
£ £
2
p=0—wt=0——1. (12)
&
I
e=— K | (13)
wy
The order parameter is now
relt = Zajei‘?/’/ffeif’ p(B. 182, hie) f(h)dB dh. (14)

j=

where we have used (9) and have implicitly assumed that 4 = O(1). The discrete character of the frequency
distribution in the high-frequency limit makes it possible to simplify (10). In fact, Eq. (14) shows that p may be
splitin different components p; = p(B.1: £2;. h: €). Therefore we can write (10) as a coupled system of equations
for the density components p;:
dp; ’p; AU, p;)
Vi _plh Tie) (15)
at B~ 0p
m
U; = Im{K Za,e“‘?/*@”w‘f‘fe"f‘/*f“p(ﬁ.r; 2 hie) f(h) dB dh — helPreitia b (16)
I=1
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2

/pj(ﬁ.r:/l:E)dﬁ: 1. a7

0

Egs. (15) and (16) contain terms with rapidly varying coefticients. It is then to be expected that an appropriate
asymptotic method will be able to average them out thereby capturing the slow evolution of p; (or perhaps its
envelope). This may be achieved by introducing tast and slow timescales as follows:

We look for a distribution function which is a 2 -periodic function of 8 according to the ansatz:
P g
PP hiey = p" (Bt 2 e + O (19)

n=I(

Inserting (19) into (15) and (16), we obtain the following hierarchy of equations:

RUR{0)]
dp/»
8‘ =0, (20)
dp!" 5
‘/ :_; ,9(-0)11’1] KZulei(_@,~£’,)rc—|ﬂz;()}_llci(ﬂ+52/()
ot ap ! -
1#]
AR ()] 42
3P, a°p P
J J . ) —if8 7 (O
- — — Ka;—{p. Ime ¥ Z. ")} 21
ot ap? ipp P Imie 20 21)
n (2) ' ’
ap! Py . ) :
J (h L2201 1B (D) (B+82;T)
Py __;6 P; Im KZU//L“’ Te! Z, — helBHsiT
1#]
oo th a2 ()
S e - rip‘. ) p;
(‘” (2= 20T B D) j j
+p Im| K Qe ez, — 5
g ; / ' ot op-
APt —iff (0 0 —id
—Ka, ';,E{p, me™ " Z) + ) Ime M ZE)) (22)
where
Zj(-”)(t) = /ei"p“”(n. Tt 82 h) fihydndh. (23)
The normalization conditions
27
//)“”(r]. T.1: 825, hydn = gy, (24)
0

follow from (17) and (19).
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2.1. Leading-order distribution function

Eq. (20) implies that ,0;0" is independent of 7. Then the terms in the right-hand side of (21) which do not have
7-dependent coefficients give rise to secular terms (unbounded on the 7-timescale). The condition that no secular
terms should appear is

“P_,('O) 52 p(Ox

0, B \
+ Ka DIme 7z = 0. 25)
o1 apr T Reiggle Imte R0l (

This equation should be solved for p tog,ether with (23), and (24) (for n = 0), and an appropriate initial condition.
We see that, except for the A-integration in (23). this problem is equivalent to solving an NLFPE with frequency
distribution g(w) = &(w) (identical oscillators) and coupling constant K; = Ka;. If the initial condition is inde-
pendent of the external field /2, we know that the solution of the previous NLFPE evolves towards a stationary state
as time elapses [11]. If the initial condition depends on /. all we can say is that / ; m(ﬁ t:h) f(h)dh tends to a
stationary state independent of 4 as r — oc. In both cases all possible stationary std[es are solutions of Egs. (26)
and (27) below | 12]

Ka; Ry ' cos(w; —p) /;)2?! dﬁ! e ~Ka; R D7 cos(W—g—p)

0) c o~
' )(ﬁ) 7 - — _r T —. (26)
Ow dﬁelxuik,[) cos(¥; —f) (0~ dﬁlefKu, R; Dl eos(@; —p—$")
The order parameter R_,-ei'l’/ is calculated by inserting (26) into (23):
on
R,-ei"’r — /e”’plo (n)dn = I]_m; Z;())(r). (27)

0

For Ko < 2D, the only stationary solution is p”)) = 1/(2m) (incoherence), which is stable. At K«; = 2D,

a stable branch of synchronized solutions blfunates supercritically from incoherence. They exist for all Ko; >
2D.
The overall order parameter (14) is given by
m
e = "oy Ry T 4 O (28)
J=1

To find ¥, we multiply both sides of (28) by e "', and then take imaginary and real parts. After a little algebra, we
obtain
YLy Ry sin(82;T + W)
s e Ry cos(2T W)
n
r:Za/ R cos(§2;T +¥; — ). (30)

J=1

tan 1 = (29)

Notice that r in (30) may be negative. positive or zero. Then the amplitude of the overall order parameter is
lr(r)].

letus now consider, for the sake of definiteness, the special case of an asymmetric bimodal frequency distribution,
with zero external field.

MNo)=ad(2 -+ —-o)d(2+1). O<a <], fh) =8h), (31)
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and analyze the possible synchronized states. Eqs. (29) and (30) become

o Ry siiy, + 1) + (1 — @) R_sin(¥. — 1)
o R_cos(Wy + 1)+ (1 — )R cos(¥ —1)

tan y =

r=aRycos(¥y + 17— ) il —a)R_ocosi¥ T — Y ). (33)

Let us now assume that « < 12 to be specitic. Then we have the following possibilities depending on the value of

the coupling constant:

(1) If0 < K < 2D/(1 — «). the incoherent solution p = 1/(27) 1s stable and it is the only possible stationary
solution.

(2) 2D/l —w) <« K < 2D/« a ¢globally stable partially synchronized solution issues forth from incoherence 1t
K=2D/(l -«).Ithas Ry =0. ¢ = —t.andr = (1 —«) R_. Itscomponent p; = 1 /(2:7) 1s incoherent
while its component p_ is synchronized according to Eq. (26). The overall effect i~ having a traveling wave
solution (rotating clockwisely). once the angular variable 8 1s changed back to ¢ according to (12).

(3) If K > 2D/w. the component py. becomes partially synchronized too. The probability density then has travelir g
wave components rotating clockwiseiy and anticlockwisely. Their order purameters hav e different strengths ard
R > Ryilw < 1/2.

When o = 1/2. both traveling wave components appear at the same value of the coupling constant, K = 41,
and have equal strength: Ry = R_ = R V. = ¢_ == &, R is the amplitude of the order parameter corresponding
to 4 unimodal frequency distribution and @ coupling constant K, = K. =« K = K /2. Then (32) and (33) imp-y
that ¥ = ¥ + ¢x (¢ is an integer number) and r = R cos(wor + ¢m). respectively. Thus we have obtained
an overall standing wave which 1s stable. OF course other possible solutions are travelirg waves with K. = ),
R_ = 0and R. = 0. K_ > 0. which should be unstable because incoherence is an unstible solution of (26) for
the corresponding stationary component p; it K72 > 2D. These results coincide perfectly with those obtained
by means of bifurcation theory in [13.15] for a symmetric bimodal frequency distribution (@ = 1/2). To see
this, we recall that the stable (up to a constant shift in the origin of time which depends on initial conditions)
standing wave probability density may be approximated near a bifurcation point K. = 4D by the following
expressions [15]:

I s 5
p(t‘).t.cu):;;{—ll +ea - Oe . =4 + e K- (3h

Ci\!." +6) ol Q21 #) [

tee. R =ywj- D (39)

[ e e

! Re Lot Im(y +
A [ RO ok, WOHB )
V Re(y + 49 Re(y + fB)

where c¢c means complex conjugate of the preceding term. As wy — . the parameters o, 3. y of
(36) become | 15]

| [
=-. =0. )= (37
T3 A YT IpK, (37
Inserting (34)—(37) in Eq. (7) for the order parameter. we obtain that ¥ is constant and
.7) . //(K tzﬁ“ o ()(k Ko S,
r( =y n — COS wol + O(( - K. ). (3%)
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Now we can compare Eq. (38) with the result of our two-timescale method. r = R coswpt. R is the amplitude
of the order parameter corresponding to a unimodal frequency distribution and a coupling constant K = K_ =
« K = K /2. Near the bifurcation point, Eq. (2.12) of Ref. [12] with K. = 2D (corresponding to wy = 0) and
K4 = K /2 vield R ~ /(K /2 = 2D)/D, which implies exactly the result (38). It is immediate to show that both
methods also lead to the same expressions for traveling wave solutions.

2.2, First-order distribution function

Etfects of the external field 4 are absent from the leading-order expression for the distribution function, Eq. (26)-
(28). They become manifest when calculating its first correction, & oI, We obtain from (21):

((WJ]

() o (() (X{Z . . s h . )
o VBt =——p"Im| K E - s L Lty + 0 (B 1. h).
/ ap / ‘(52 — .Q,') lQ,‘ J-
I1#]j ’ ’
(39)
™ T T
0.6480 x | T . q . r ——
—— Finite differences
0.6470 |- - Spectral Method{ 10 modes) -
~ — Spectral Method(4 modes) ,
P
0.6460 : bz
06 | H
0.6450 |~ B
0.6440 -
0.6430 - =
Soal oo Lo’ T ! -
b 16.8604 16.8606 16.8608 16.8610 16.8612
- |
0.2 }- 4
0.0 MAN\/\/\/\/\/\N\/WWVWWMVVW ) AN i
0.0 50 10.0 15.0 20.0

t

Fig. 1. Comparison between the results of numerical simulations by finite ditferences and our spectral method. We have a discrete bimodal
trequency distribution of the oscillators, no external field and the foliowing parameter values: wy = 15. K = 6 and o = 0.5 (frequency
distribution with reflection symmetry). Dilterences between the methods are appreciated only on a rather fine timescale as the inset shows.
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where we have used periodicity in 8 to derive the normalization condition (41) from (24)
The left-hand side of Eq. (40) is a linearization of (25) about /);())_ Since the stationary solution (26) is stable (as
it corresponds to a mean-field Kuramoto model with a unimodal trequency distribution). an initial condition shou 1d

evolve towards the stationary solution of (40). which is
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Fig. 2. Time evolution of the order parameter amplitude |#¢7)| for the same parameter values of Fig, 1:
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(40)

a) analytical result from Hur

leading-order asymptotics: (b) numerical simulation: (¢) comparison between the results of leading order (zcroth). first-order asymptotics
and direct numerical simulation. Notice how adding the first-order terms diminishes the constant phase shift between asymptotic and

numerical results.
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be determined by imposing (41) and the condition that

By using the previous expressions, the order parameter may be calculated up to O(e?) terms:

m m
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j=1 i=1

R(i)

142, r-HP

'+ 0.



306 JA. Acebron, L.L. Bonilla/ Phyvsica D 114 (1998) 296-314

where
+x 2
R_/(.l)e“p/(H = / /e”’p}”(n.h)f(/r)dhd:;
)
27
_ Z o Ry ,Cfng,frsz,;r ’"”-’/p,‘mel”’dn
0
L i . I @R o221ty
+§E;e : / h‘/(lz)dhAil(’Z‘QI Y 1=y
S #j
+x 27
+—§—e / /v-'" A h f ey dhdy + R e v (45)
= ()

The effects of the external field /# are now included in the O(#)-terms of {44) given by (45). Taking imaginary and
real parts in Eq. (44). we obtain

Z',-":l o |R; sin(82;T + ) + ¢ R(v“ sin(£2;t +¢’vm)]

tan ¢ = m (I ’
Dl Ry cos(2;T + W) + e R, (,O\(QTjLL[’ )

n
r=>aj|R; cos(2;T+ ¥ - y) +e R cos(2r + ¢ —y)). («7)
Je=1
We shall see in the next section how the contribution of the first-order corrections to the order parameter results in bet-
ter agreement with numerical simulations. When the external field is zero, a better quantitative agreement is reached
between our two-term asymptotic approximations and direct numerical simulations, When the external field is not
zero, new qualitative features are present in the simulations which are captured only by including the O(¢)-terms.

3. Numerical results
3.1, Spectral numerical method

Direct numerical simulations of the nonlinear Fokker—Planck system confirms our asymptotic results. We have
studied discrete bimodal frequency distributions only, and used two different numerical methods. A standard finite
differences method may be used to numerically integrate (5)—(8) without stability problems up to frequenc es
wo = 15 (we set D =1 in all our computations). For larger frequency values, time steps below 0.008 were needed
and the computing cost makes this method impractical. As indicated in the previous section. the drift term domina es
diffusion at higher frequency and the system acquires a quasi-hyperbolic character. To simulate the NLFPE at hich

e o - ;._’
Fig. 4. Time evolution of the order parameter F(ye ¥ for an asymmetric bimodal frequency distribution. Parameters are the same as
in Fig. |, except that now ¢ = 0.4. (a) Analytical results (zeroth-order asvmptotics) for the evolution ol ri7)|: (b) numerical resuits:
(¢) comparison between both results: (d) evolution of the phase of the order parameter ¥ () there is only a small time shift between
analytical and numerical results. Notice that for un asymmetric frequency distribution with these parameter values, K > 2/a = 10/3. s0
that the synchronized phase is an asymmetric combination of clockwisely and anticlockwisely rotating traseling waves.
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Fig. 5. Time evolution of (a) and (b) ¢ (7). and (¢) r(7)|. for the asymmetric frequency distribution of Fig. 4 when wy = 200. The othe:
parameter values are as in Fig. 4.

frequencies, we propose a simple spectral method, which we will describe in the simple case of f(h) = §(h). The
idea is to find a set of ordinary differential equations for moments of the probability density related to the order
parameter re'¥:

2
= /p(H. 1. ) cos|j (¥ — 6] de. (48)
0
RES
,\-;” = /p(ﬁ. 1. £wp) sin[j (¥ — 6] dH. (49)
0
r:a.\‘(+1)+(l — (50
Fig. 6. Same as Fig. 4 for a lower value of the coupling constant. K = 4.5. Now Ko = 1.8 < 2 < 2.7 = K (| ~ «). Only the component

of the probability density with negative frequency is synchronized. Then we obtain a traveling wave rotating clockwisely with constant
[r(t)| and phase ¥ (1) = —wqi.
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An infinite hierarchy of equations for these moments may be obtained by differentiating (48) and (49) with respect
to time and then using the NLFPE and integration by parts to simplify the resuit. We obtain

o K KD g
=—j ) = jwy + —-ryy — —rx —j ¥y . (51)
a = e A 2 T
d"(i'/) 2 00 gy K1 o Kio Ggen dyr )
e R e e L S s (52)
a1 Tente e e T
dyr {1 (hH
r— =awplay, — (1 —a)x_ (53)
a 0 lorx) .
As explained in Section . an equivalent hierarchy may be derived directly from the Langevin cquz_uions (1) and
(2) [27]. The numerical method consists of solving (S0)—(53) for j = 1..... N. with v, VED = ;N" "~ 0. The

number of modes. N, should be chosen so large that the numerical results for the order pum/nc'te'z do not depend m
it. A practical case is presented in Fig. | for wy = 15, K = 6 and « = 0.5 for which the mcthod of finite differences
is still practical. We see that keeping tour modes (N = 4) yields already quite good agreement. Let us now describe
the results of our numerical simulations.
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Fig. 8. Same as Fig. 7 for a larger hq. /iy = 4. The oscillations of the order parameter amplitude become more pronounced.

3.2, Results for bimodal frequency distributions and no external field

We see in Figs. 2-6 that our analytical (zeroth-order asymptotic) and numerical results agree very well except
for a constant phase shift which decreases as wq increases (compare the zeroth-order asymptotic result and the
numerical simulations in Figs. 2(¢) and 3 corresponding to wg = 15 and 200, respectively). Fig. 2(c) shows the
great quantitative improvement brought by incorporating first-order asymptotics in our expressions (44) and (45) for
the order parameter. Results for an asymmetric bimodal frequency distribution without external field are depicted in
Figs. 4-6. Asexplained in the previous section, we obtain different synchronized phases depending on the value of the
coupling constant for each component of the probability density. In Figs. 4 and 5, K > 2D/« > 2D/(1 — ). Then
each component of the probability density evolves towards a synchronized phase rotating with its own frequency,
Fwy. and with a constant amplitude of the order parameter given by the stationary expression (27). The overall
order parameter is given by Eqgs. (32) and (33) and the difference between analytical and numerical results is
a constant shift in time which diminishes as the frequency wq increases. In Fig. 6 we observe the situation for
a smaler coupling constant such that only one density component is synchronized. We obtain a traveling wave
whose order parameter has a constant amplitude and a phase linearly decreasing with time. What happens if the
frequency distribution has reflection symmetry (o = 0.5) is obvious: both density components have equal strength
and therefore the phase of the order parameter is constant and its amplitude oscillates giving rise to a standing
wave. This is exactly what bifurcation theory predicts | 13.15]. We have checked the excellent agreement between
our present asymptotic theory. the leading-order expression for the order parameter obtained by bifurcation theory.



312 LA, Acebron, LL. Bonilla/ Physica D 114 (1998) 296--3 14
0.80 (-~ SR TR S e - ‘ |
0.60 | ’
AN !
[N |
[ ‘
I \
= ‘ \
£ o040 - \
= N
o
0.20
|
0o T T T 2.0 ' 3o a0 © 50
t
1.0 e — e 1 | - — e -
05 |-
g 00 e e e e }
[ '
-0.5 ;
B ) T - T2eTT T f - D) o F "0
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such large values of the external field a stationary state is reached for long times.

and direct numerical simulations. The results obtained by these three methods are indistinguishable for K = 4.005
(K. =4).

3.3. Results for unimodal frequency distributions and deterministic external field

Our asymptotic method yields analvtical results when external fields of magnitude small compared (o «yy are
included. For the sake of simplicity we shall present results corresponding to unimodal frequency distributions,
g{w) = 8(w — wyp), and external field distributions, f(f) = §(h — hg). This case was anulyzed by Shinomoto and
Kuramoto in [17]. who determined the phase diagram and illustrated their results with numerical simulations. Our
aim here is to show how our method vields explicit time evolutions of the order parameter which are in agreement
both with the phase diagram of Shinomoto and Kuramoto and with numerical simulations. In the present simplified
case. the probability density has a unique component rotating at frequency wg which evolves towards the stationary
distribution given by Eqs. (26). (39) and (42) (in the comoving frame). The order parameter is given by (44) and
(45) except for terms of order £, This prediction is qualitatively supported by the numerical simulations as depicted
in Fig. 7. The numerical results show that the amplitude of the order parameter oscillates about the constant value
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predicted by zeroth-order asymptotics. The difference is of order ¢ and itis basically accounted by the first correction
to the leading-order result, as Fig. 7 shows. Fig. 8 shows that the oscillation of the order parameter amplitude is
enhanced as hp increases. Finally all oscillations disappear if” the external field becomes of the same order as
the frequency, as depicted in Fig. 9. which agrees with the phase diagram of Ref. [17]. Notice that our method
supports (in the limit wy — 00, i = O(1)) a conjecture by Arenas and Pérez Vicente [26]: the amplitude of the
order parameter in the oscillatorily synchronized state (in the presence of an external field) is given by the same
expression as in the stationary state if the exact time-dependent phase of the order parameter is inserted (instead
of the stationary phase). Of course it seems that the conjecture holds for a wide variety of parameter values, some
outside the range of validity of our asymptotic method {26].

4. Conclusions

The high-frequency limit of the mean-field Kuramoto model of oscillator synchronization has been studied
by new multiscale and numerical spectral methods. The main result of the multitimescale method is that the
probability density splits into independent components corresponding to the different peaks in the oscillator tre-
quency distribution. Each density component evolves towards a stationary distribution in a comoving frame ro-
tating with the frequency of the corresponding peak in the oscillator frequency distribution. The overall order
parameter may be calculated by putting together the partial order parameters of different components. This gives
a simple picture of overall oscillatory synchronization by studying synchronization of each density component.
Our method gives the same results as bifurcation theory tor those parameter values where both approximations
hold. Our asymptotic method also works far from bifurcation points and it agrees well with results of numerical
simulations.
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