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Photorefractive Gunn effect
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We present and numerically solve a model of the photorefractive Gunn effect. We find that high-field
domains can be triggered by phase-locked interference fringes, as has been recently predicted on the basis of
linear stability considerations. Since the Gunn effect is intrinsically nonlinear, we find that such considerations
give at best order-of-magnitude estimations of the parameters critical to the photorefractive Gunn effect. The
response of the system is much more complex, including multiple wave shedding from the injecting contact,
wave suppression, and chaos with spatial strucfi8@163-18208)06335-§

I. INTRODUCTION where Egs(1) and(2) are the continuity equations for ion-
ized donors and for electrons, respectively, and &j.is
Segev, Collings, and AbrahdniSCA) proposed an inter- Poisson’s law. In these equatiorssis the space variable in
esting mechanism for producing Gunn domains by means ahe direction of current flowt, is the time Ny (z,t) represents
a photorefractive parametric excitation. It occurs when twothe number density of ionized donomdy the total donor
optical waves of slightly different frequencies are incidentdensity,l (z,t) the incident light intensityS the photoioniza-
upon a biased semiconductor crystal doped with deep impution cross sectiony the recombination ratey(z,t) the elec-
rity centers. The authors conjecture that the resulting traveltron number density;- q the electron charge(z,t) the cur-
ing interference pattern excites multiple high-field Gunn do-rent densityE(z,t) the space-charge field inside the crystal,
mains that move phase locked with the interference fringesn, the density of negatively charged acceptors, apdhe
Recently, Subaciust al? proposed an efficient way of cre- |ow-frequency dielectric constant.
ating simultaneously a number of quasilocalized high-field The light intensityl (z,t) is given by
Gunn domains through hot carrier transport in spatially
modulated and nonuniformly heated electron-hole plasma,
and presented some numerical results and preliminary ex- I(z,t)=1o[1+m cogKz+Qt)], (4)
perimental confirmation.
In this paper we present a consistent model of the photo-
refractive Gunn effect and carry out numerical simulations towhich, as decribed in Ref. 1, is the intensity of the moving
understand the dynamics of the system. We find that highinterference pattern formed when two quasimonochromatic
field domains can indeed be triggered by phase-locked inteplane waves of slightly different frequencies, and o
ference fringes, as suggested by SCA. However, the response) (<w), and slightly different angles of incidence il-
of the system can be very complex, and it is not possible tduminate a bulk semiconductor crystal. In E@), K
use a simplified version of KroemerlSL criterion, as sug- =2/A is the interference wave numben, the modulation
gested by SCA, to predict the number of high-field Gunndepth of the interference grating, amgl the total average
domains traveling through the sample. Indeed, our resultttensity.
indicate that with appropriate values of the parameters of the Following Szé [Eq. (28) in Chap. 11, the current density
system the response becomes chaotic and this is, therefotkincludes drift and diffusion terms,
another example of drivegsinusoidal interference pattern of
intensityl) chaos.

~ J[D(E)n]
Il. MODEL EQUATIONS J=qnv(B)+q——70pr—, ®)
The following equations describe the photorefractive
Gunn effect: which is the standard form of the drift-diffusion current
: density® whereu (E) is the electron drift velocity anB (E)
INp = SI(Np— N )—¥n N 1) the diffusion coefficient. The drift velocity of the electrons is
ot b 7D ’ a known function of the electric field exhibiting negative
‘ differential resistance. In the following analysis we use a
on  INp 14J saturating drift velocity function given by,
X gz @
JE | E/Es—1
—___1 — v(BE)=vg 1+ ——— |, 6
- 85(n+NA Np), ©) (B) S{ 1+A(E/Ey)”? ©
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FIG. 1. Level curves of intensity versus driv-
ing frequency for different integer values if, in
Eqg. (1). Numerical simulations have been per-
formed for points labeled, B, C, andD, with
dimensionless values of intensity and frecuency
(ig,w): A=(0.0025,0.05),B=(0.035,0.055),
C=(0.05,0.0109),D=(0.07,0.05). The Fourier
spectrum of the current will be displayed later in
Fig. 3 for the points on the horizontal lire.
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where v, is the saturation drift velocityEg the saturation boundary conditions and a dc voltage bias we find that
field, andA and 8 dimensionless constants that depend edewta|/dt=(c/L)fg(aJ/ax)dx=0 (provided we have a do-
plicitly on the mobility of the material g=v/Ey). main moving at constant speeg note that with physically
Differentiating the Poisson equatig8) with respect to reasonable boundary conditions, the domain cannot move at
time, inserting the result in the continuity equation for elec-constant speed as it arrives at a realistic contact, e.g.,
trons (2), and integrating with respect to space, results inOhmig. Since the Gunn effect refers to time-dependent os-
esdE/dt+I= iy . Here the constant of integratiofy,, is  cillations of the current under dc voltage bias, one should not
the total current density. Introducing the electron currentuse periodic boundary conditions when discussing it.
density given by Eq(5) in the previous equation leads to  The most important boundary condition in a study of the
Ampere’s equation, Gunn effect in long samples is that for the injecting contact.
In fact, the formation of Gunn domains is due to a periodic
J[D(E)n] JE destabilization of the boundary layer attached to such contact
— e (7)  during the oscillation§® During the formation of a new
Jz at L .
wave at the injecting boundary, the displacement current
plays a crucial role and cannot be neglected. Thus, we use an
Ohmic condition at the injecting contad®= pJy,°° and
JE/92=0 at the receiving contactvhich is thus passive and
integration time is savedWhen p is such thatE/(pqNa,)
intersects (E) on its decreasing branch, the Gunn effect is
found form=0 and appropriate values of the bds"®
In order to solve numerically our model equations, we
will first write them in nondimensional form. Let us redefine
our variables in dimensionless form as follows:

Jiota= v (E) +q

Notice that in Eq.(6) of Ref. 1 the current density errone-
ously includes the displacement term, and this leads to a
incorrect Ampee’s equation in which the displacement cur-
rent drops out.

In addition to these equations, the electric field distribu-
tion must satisfy theeverse biascondition for a given ap-
plied voltageV,

L
f Edz=V. (8)
0

Thus, to model the photorefractive Gunn effect we use the
correct form of Ampee’s law(7), the continuity equation for
ionized donorg1), Poisson’s law(3), the bias conditior{8), 3 N n (FEJ)
and appropriate initial and boundary conditions. Solution of —j_ _~total -_D 7=, v(F)= v s
these equations using the known functions for the light in- vsdNa' Na' Np' Us
tensity (4) and drift velocity(6) provide the four unknowns, ©)
Np(z,1), n(zt), E(zt), andJgua(t). . . .

It should be emphasized that boundary conditions play af'Serting this in Eqs(1) and(3)—(8), we obtain
essential role in the existence of the Gunn effect. Although it

can be debated which are the correct conditions to apply in dF  dn\ .

order to simulate a particular experiment, periodic boundary € ng 5@ =j(t) = nv(F), (10)
conditions, as used in Ref. 1, should be avoided: they yield a

total current density that is constant in time when a dc volt-

age bias is imposed. In fact, integrating Amgis law we oF

find Jyga=L e dV/dt+ ng dx]. Then imposing periodic GW: p=1-7, (1)
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Here we have defined the following nondimensional param- €sEs

eters[we assume constant diffusivitiy (F) =D]: k= €qN, K. (14
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FIG. 2. (Continued.
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lll. RESULTS

ested in testing a central piece of SCA’s analysis, namely
We have solved Eqg10)—(13) numerically for different  their particular use of KroemerNL criterion, their Eq(20).
values of the parametersy and iy, keeping fixede  Prompted by SCA’s suggestion that the length in Kroemer's
=4.138<10"% m=0.1, p=1.8, k=27, 6=0.05 a criterion may be the distance between multiple domains, we
=0.01, 8=3.5294, andp=3. These numerical values cor- combine their Eq(20) with their Eq. (17) for the electron
respond to those used by SGAVe were particularly inter-  densityn;, and usd =L/N, wherel is the distance between
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FFT

FIG. 3. Fourier power spectra ¢{t) for w
=0.05 and diferent values afy in the range
0.045-0.065(line E of Fig. 1). Each FFT is rep-
resented by a narrow horizontal band with gray
scaled frecuency mode amplitudes: whik@rge
and black(smal), in arbritary units. The arrows
correspond to the simulations of a periodic signal
(F) and a chaotic oneQ) carried out in Fig. 4.
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adjacent domains. Then we obtain a formula for the maxifor a given modelequations, bias, boundary, and initial con-
mum number ) of high-field domains which may coexist: ditions) it can be proved that no oscillatory instability is
possible unless th8lL product(wherelL is semiconductor

_ 195.565 length andN is doping densityis above a certain number.
N<No= 102 0\2 (159 For Kroemer's model of the Gunn effectinGaAs under dc
l+T—10(<E) voltage bias, see Fig. 3 of Ref. 9. An analytical estimate

(probably not a very precise oneould be obtained by
We have used SCA’s numerical valudg énd ) are mea- adapting to the Kroemer model the arguments in the Appen-
sured in Wm 2 and Hz, respectively Figure 1 depicts the dix of Ref. 10. This said, SCA have used a particular version
level curvesQ(ly), which are obtained wheN, takes on of theNL criterion in whichN is an electron density arldis
different integer values. If SCA's theory holdbl=i be- either the semiconductor lengfbne domainor the distance
tween the level curvebl,=i—1 andNy=i. However, we between domainénultiple domaing It is not surprising that
observed Gunn domain@ig. 2, A) where Segewt al's this usage produces results that are not quantitatively correct.
theory predicts they should not jgoint A in Fig. 1). Points  Furthermore, the Gunn effect is due to the instability of the
C andD in Fig. 1 would correspond to a coexistenceNdof ground state and the effect of light is only to trigger this
=2 andN=3 domains, respectively, but we find four do- instability. Thus, very small perturbations of light instensity
mains and a periodic respondég. 2,C) and a quasichaotic can result in large density perturbations, in contradiction
responseFig. 2, D), respectively. Finally, at poi corre-  with the linear relationship between the intensity modulation
sponding to the conditions proposed by SCA to illustrateand the electron density perturbation derived by SCA. This
their theory, one domain is created during each oscillatiorhas been confirmed by numerical simulations that show the
period(Fig. 2,B). In fact, the response of the system is very existence of a Gunn effect for very small light intensities.
complex and within each of those zones in @) plane, It is interesting to compare the response of the system in
where a constant number of high-field domains is predictedpointsC andD of Fig. 1. We observe that the dimensionless
it is possible to find all kinds of behavior: periodic with a current densityj(t), in caseC is periodic(Fig. 2) although
single frequency, periodic with a high number of frequen-it contains a large number of frequencies, as can be seen in
cies, and chaotic. the FFT spectrum shown in the lower right of the figure.
The discrepancy between the computed and predicted rénstead, the response in cadeis not periodic and the FFT
sponse should not be surprising. In fact, the Gunn effect is apectrum appears chaotic. The difference between these two
periodic oscillation of the current(J,,,) in a dc voltage cases can be understood by looking at the electric field pro-
biased semiconductor presenting negative differential velodfiles as a function of time. In ca<g, there are several waves
ity. It is due to periodic shedding and motion of charge di-that originate at the injecting contaétight contact and
pole waves(high field domains at a boundary or a nucle- propagate towards the receiving contact. Neither of these
ation site. It is intrinsically nonlinedr® so that the relevance waves overtakes the previous one and this leads to a smooth,
of linear approximations such as those used in Ref. 1 is queperiodic response. In cag®, however, a wave originates at
tionable. We think that Kroemer's NL criterion implies that the injecting contact and propagates through the sample.
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Later, a new wave is injected that moves faster than théixed value ofQ) and varying the intensitl;, within a certain
previous one, and that overtakes it before reaching the resmall range corresponding to likein Fig. 1. The results of
ceiving contact. The interaction between waves inside théhese simulations are summarized in Fig. 3, which shows the
sample leads to a complex response that may become chatensity of each mode of the FFT spectrum as a function of
otic. lo. Notice that there is a frequency, which is very close to
To understand the transition between the periodic andhe excitation frequenc{), that appears for all values b&f.
chaotic solutions we carried out numerical simulations for aAlso, all integer multiples of this frequency are present in the
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current density history. It can also be observed that there is a It is also interesting to observe that within the chaotic
sharp transition between a periodic solution and a chaoticegion there are windows in which the response again be-
one. Figure 4 shows the current density history and fieldcomes periodic, with frecuency given by the fundamental
profiles for caseF in the periodic region, and for cagg  frequency divided by 2, 3, or 4. In these specific ranges of
inside the chaotic region. lo, the interaction between waves inside the sample pro-
The bias condition imposes a conservation of area in théluces a simple pattern with a periodic sequence.
electric field profileE(z) for all time. Thus, the size of a
traveling wave must decrease when a new wave is generated
in the injecting contact(right contact. If the new wave We have thus found that high field domains could indeed
grows fast enough, the old wave must disappear to keep thge triggered by phase-locked interference fringes, as sug-
area constant. In both cases, $eandG in Fig. 4, several gested by SCA. However, a literal use of their version of
waves are born at the injecting contact and propagate td<roemer’s NL criterion does not often agree with numerical
wards the receiving contact during a period. In c&seall ~ simulations of the model for the photorefractive Gunn effect.
the waves reach the left contact and this leads to a periodilm addition, we have found very interesting examples of
response in the density current. As the intenkjtyncreases, natural and driver(sinusoidal interference pattern of inten-
the wave formation velocity increases until a critical valuesity 1) chaos when appropriate parameter values are used. In
above which the waves that propagate through the sampléie regime for which the high field domains carry a large
disappear before reaching the receiving contact. This profraction of the bias, an asymptotic theory of the Gunn
duces a complex behavior with different patterns ofeffecP=8can be extended and applied to the photorefractive
formation-disappearance of waves. Larger valuelgyoésult  model, and used to interpret and predict the results of the
in chaotic responses such as that shown in casas an numerical simulations with greater accuracy than SCA'’s lin-

IV. CONCLUSIONS

example. earized approach. These results will be presented elsewhere.
Im. Segev, B. Collings, and D. Abraham, Phys. Rev. L&8, J. L. Velzquez, Physica [108 168 (1997).

3798(1996. L. L. Bonilla, I. R. Cantalapiedra, G. Gomila, and J. M. Rubi
2L. Subacius, V. Gruzinskis, E. Starikov, P. Shiktorov, and K. Phys. Rev. B56, 1500(1997).

Jarasiunas, Phys. Rev. 35, 12 844(1997). 8L. L. Bonilla and I. R. Cantalapiedra, Phys. Rev.56, 3628
3S. M. Sze,Physics of Semiconductor Devicegnd ed.(Wiley, (1997).

New York, 198]. 9L. L. Bonilla, F. J. Higuera, and S. Venakides, SIAi@oc. Ind.
“M. P. Shaw, H. L. Grubin, and P. R. SolomdFhe Gunn-Hilsum Appl. Math) J. Appl. Math.54, 1521 (1994.

Effect (Academic Press, New York, 19¥9 10A. Wacker, M. Moscoso, M. Kindelan, and L. L. Bonilla, Phys.
5F. J. Higuera and L. L. Bonilla, Physica 57, 161 (1992. Rev. B55, 2466(1997.

6L. L. Bonilla, P. J. Hernando, M. Kindelan, M. A. Herrero, and J.



