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Abstract

The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency
distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization
to phases with a time-periodic order parameter. The richest behavior is found near the tricritical point where the incoherent,
stationarily synchronized. “traveling wave” and “standing wave” phases coexist. The behavior near the tricritical point can
be extrapolated to the rest of the phase diagram. Direct Brownian simulation of the model confirms our findings.

Kevwords: Oscillator synchronization; Kuramoto model; Bifurcations with symmetry

1. Introduction

In recent years mathematical modeling and analysis of synchronization phenomena received increased attention
because of its occurrence in quite different fields such as solid state physics | 1-3], biological systems [4—7], chemical
reactions [8}, etc. These phenomena can be modeled in terms of populations of interacting, nonlinearly coupled
oscillators as first proposed by Winfree [4]. While the dynamic behavior of a small number of oscillators can be
quite rich [9], here we are concerned with synchronization as a collective phenomenon for large populations of
interacting oscillators [5].

A simple model put forth by Kuramoto [ 10] and Sakaguchi [11] (see also |5]) consists of a population of coupled
phase oscillators, 6;(r), having natural frequencies w; distributed with a given probability density g(w)

N
b= + &N+ Y Kysin@; —6;), i=1,....N. (1)
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Here &; are independent white noise processes with expected values
(& (1) = 0, (&:(NE; (1)) = 2D8(r — 11)8;;. 2

Thus each oscillator tries to run independently at its own frequency while the coupling tends to synchronize it
to all the others. When the coupling is sufficiently weak the oscillators run incoherently whereas beyond a certain
threshold collective synchronization appears spontaneously. So far, several particular prescriptions for the matrix K i
have been considered. For instance, K;; = K > 0 only when [/ — j| = 1, and K;; = 0 otherwise (next-neighbor
coupling) [12]; K;; = K/N > 0 (mean-field coupling) [8,10]; hierarchical coupling [13]; random long-range
coupling [14-16] or even state dependent interactions | 17]. In the mean-field case, model (1) and (2) can be written
in a convenient form, defining the (complex-valued) order parameter

N
. 1 .
o i;
re _NEIeJ. (3)
j:

where r(7) > 0 measures the phase coherence of the oscillators, and v (r) measures the average phase. Then Eq. (1)
reads

O =w; + Krsin(y —0;) + &), i=1.2..... N. (4)

In the limit of infinitely many oscillators, N — oo, a nonlinear integro-differential equation of the Fokker—Planck
type was derived [18,19] for the one-oscillator probability density, p(8, 7, w),
3 32
o _por
at 90?2
the drift-term being given by

_ 2 em (5)
FEAe

v(f, 1, w) =w+ Krsin(y — 9), (6)

and the order parameter amplitude by

27 +oc
relV =f / emp(ﬁ.t,a))g(cu)dé) dw. )]
0 -
The probability density is required to be 27 -periodic as a function of # and normalized according to
27
/p(H.t,w)de 1. (8)

0

Mean-field models such as those described above were studied, e.g., by Strogatz and Mirollo [19] in case the
frequency distribution, g(w), has reflection symmetry, g(—w) = g(w) and it is unimodal (g(w) is non-increasing
for w > 0). In [19], the authors showed that for K smaller than a certain value X ¢» the incoherent equiprobability
distribution, po = 1/(27), is linearly stable, and linearly unstable for K > K.. As D — 0+, the incoherence
solution is still unstable for K > K. (= 2/mg(0)at D = 0), butitis neutrally stable for K < K.: the whole spectrum
of the equation linearized about pg collapses to the imaginary axis. In [20], the nonlinear stability issue was addressed,
and the case of a bimodal frequency distribution was considered (g(w) is even and it has maxima at w = +wy).
In this case, new bifurcations appear, and bifurcating synchronized states have been asymptotically constructed
in the neighborhood of the bifurcation values of the coupling strength. The nonlinear stability properties of such
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solutions were also studied for the explicit discrete example g(w) = %[5 (w—wp) +8(w—+wp)], cf. [20]. A complete
bifurcation study taking into account the symmetry properties of g{(w) was carried out by Crawford [21]. Similar
results were obtained by Okuda and Kuramoto [22] in the related case of mutual entrainment between populations
of coupled oscillators with different frequencies. The main results concerning linear stability of incoherence with
a bimodal discrete frequency distribution are summarized in Fig. 1 (cf. Fig. 1, p. 319 in [20]). Also, in Fig. 5.
p. 327 of [20] a global bifurcation diagram left unresolved the full behavior of the oscillatory branch starting at
K =4D.

The purpose of this paper is to complete the investigation started in [20], analyzing in detail (asymptotically)
the solution living in the neighborhood of the tricritical point (K/D = 4, wp/D = 1) in the parameter space
(K/D, wy/ D), Fig. |, where an O(2)-symmetric Takens—Bogdanov bifurcation occurs. It turns out that such a task
is far from being merely a detail, since technical difficulties are not at all trivial, and results allow to complete the
conjectured diagram in Fig. 4 as shown in Fig. 5 below. In Section 2, a rwo-time analysis for the Hopf bifurcation,
already developed in [20], is revisited; in Section 3. a multiscale analysis is performed near the tricritical point,
generalizing the asymptotic analysis earlier accomplished in [20]. The corresponding bifurcation equations have
been solved recasting the problem into a general formalism due to Dangelmayr and Knobloch [23]. Numerical
results designed to confirm the previous findings are presented in Section 4, and these are summarized along with
the analytical results in Section 5.

2. Two-time scale analysis for the Hopf bifurcation
2.1. Linearized problems

Here we revisit certain results given in [20]. In the Hopf analysis conducted there, degeneracy of an eigenvalue
of multiplicity 2 was overlooked, as pointed out by Crawford [21]. We will recall here the relevant points of the
linear and nonlinear stability analysis near the line K = 4D in Fig. | where a Hopf bifurcation from incoherence
arises for an even discrete bimodal frequency distribution g(«w). The linearized eigenvalue problem for this case
may be obtained by inserting p = 1/(2m) + exp[Ar]u (8. w) in (5) and (6), and then ignoring terms nonlinear in

7N

2w +oc
Fu ou K O N NS
Ve —w o + Z—Ree eV u(f W) gw)dd do = iu, (9
0 —o0
2
/u(().w) de = 0. (10)

0

It can be shown that there are two eigenvalues A, which solve the equation [19]:

d / 800 gy = 1
A+ D+iv (
They are explicitly given by [20]

K 1
xi=_0+ziz\/1<2—16wg, (12)
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Fig. 1. Linear stability diagram for the incoherent solution gy = 1/(2m) and the discrete bimodal frequency distribution.

g(w) = [§(w — wqg) + 8(w + wy)]/2 in the parameter space (K /D.wy/D). py is linearly stable to the left of the lines K = 4D,
wy > D (where Hopf bifurcations take place) and K/(2D) = 1 + a)(z)/Dz. wp < D (where one eigenvalue of the linearized problem
becomes zero). To the right of these lines. the incoherent solution is linearly unstable. At the tricritical point K = 4D, wy = D. two
cigenvalues become simultancously zero. The dashed line separates the region where cigenvalues are real (below the line) from that where
they are complex conjugate (above the line).

when
(@) = 3[8(w — wp) + 8@ + wo)]. (13)

Fig. | is straightforwardly constructed from (12). Above the dashed line, 4wy > K, and the eigenvalues are complex.
Each complex eigenvalue is doubly degenerate due to the reflection symmetry of g(w) [21]. By direct substitution
into (9), it can be checked that

ei? e i

S L 14
Dttio =i lie (14

i

are two linearly independent eigenfunctions corresponding to the same semisimple complex eigenvalue A [21].
They are related by the reflection symmetry w — —w, # — —6. When A is real, these eigenfunctions are complex
conjugate of each other. The eigenvalue A is no longer semisimple but it still has multiplicity 2 [21].

2.2, Two-time scale analysis

Let us now recall how to use the method of multiple scales to construct the solution branches which bifurcate
from incoherence at K = 4D, wy > D [20]. We define a small positive parameter ¢ which measures the departure
from the critical value K. = 4D by

K=K.+e’Ks, O<e<xl. (15)



L.L. Bonilla et al. / Physica D 113 (1998) 79-97 83

K> = 1 has to be determined later according to the direction of the bifurcating branch and the scaling (15} will
be justified later. The probability density p (6. t. w: €) will be sought for according to the Ansatz [20]:

3

1 — )
plB.t, w,e) = Eexp Zs-’q,((),r,r)—l—O(sﬂ (16)
j=1

T = (K — Kt = > Kot (17)
The rationale behind (16) is as follows. First of all, near K == K, small disturbances from incoherence decay or

grow according to the values of the factor

ar(K.)
0K

exp[A(K)r] ~ exp[Re (K — Kot +1Imi(Kot . (18)
Here A(K) is given by (12) with K given by (15) and wp > . Hence A(K) ~ %if2 + e Ky(1 FiD/$2)/4, where
2 =, /w(z) — D2, This explains the appearance of the two distinguished time scales r and . The exponential ansatz
(16) was introduced in [ 18] motivated by the failure of the usual expansion of p in power series of ¢ for the particular
model considered there. For that model, an algebraic ansatz yields a vertical bifurcating branch to all orders in ¢. In
other models where the unknown p is everywhere non-negative, such an exponential ansatz yields an asymptotic
expansion (in &) with larger domain of validity than a purely algebraic ansatz [24].
Inserting (16) and (17) into the governing equations (5)—(8). we obtain the hierarchy (3.5a)-(3.7b) of [20]:

27
Loy = (3 — D3 + wi)o) — K.Ree (e o)) =0. /al do = 0, (19)
0
2 o 2
g . —iw e 9 )
E(Uzﬁ-—/)—) :—KCdH{O'] Ime <e .O'])}. /(0’2“{“7) dé = 0, (20)
- 0
012 . (’|2 it e o e (’12
L a3+o|ag+? = —K; 0 02+7 Ime """ .01) +0;Ime e ’02+T
— Ka[dro1 + B Ime e o). 20
2n N
of
(73+(11()'2+? de = 0.
0
Here we have defined the following scalar product [20]:
271 +0C
1
(a(f, w). BB, w)) = I / / a6, w)B(O. w)g(w)dwdb. (22)
0 —

The solution of the homogeneous linear equation (19) is a linear combination of r;¢'*’,/ = 1, 2, and the complex
conjugates of these terms (the y; are given by (14)):

A iene o4 A

_ (20 —6) 13
D +i(2 + w) Dri2—w). +cc. (23)

aq
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where 22 = a)% — D? and cc denotes the complex conjugate of the preceding term (in [20] there was A_ = 0,
AL = A, thus two terms were missing). This value of o has also zero mean as a function of 4. Insertion of this in
Eqgs. (20) and (21) yields

2 2 .2 2 --2i8
of 5 A e Ace
E : 1 :2 2821 +
(°2+2> ¢ DriC+a)  Diia—w) T

D+iw

A S T (24)
from which
of 2D +iw)AL A i A2 li21+6)
2t = bt Dt T pria ToZDF 2t @]
A2 eZi(.Qer)
p (25)

+ - : : + cc,
[D+1(2 —)][2D + i(£2 — w)]
which has also zero mean, as required. After lengthy but rather elementary calculations to evaluate the right-hand
side of (21), this equation takes on the form

o3 . -
L (03 + ooy + ?') = Q0 (1. e L cc+ 0_(1, w)e? " e, (26)

where only the terms that may be resonant have been kept. It is natural to look for a solution of the form

o
3

o y ,
o3+ gj09 + FI = P! oo+ Pt | ee, (27

We determine P+ by substitution of (27) into (26),

Ke

[D+i(2 £ w)Pr = — (. P2) = Q4.
Then we can solve for Py :
K.A(l, P
P, = c( i> + Qi (28)

T 2ID+iRtw)] D+i2F*w)

From (11) and the reflection symmetry of g(w), we know that %KC(I, 1/ID + i(£2 £ w)]) = 1. so that the scalar
product of 1 with (28) produces the following non-resonance conditions:

O+ 0
—_— )} =0, —_—} = U,
<D+i(Q—|—a)\)> ' <D+i(.(2~w)> 0 (29)

where we set

+0o0

(a(w)) = / a(w)g(w)dow. (30)

The zero mean condition is also satisfied automatically. Some more tedious calculations lead finally to two nonlinear
coupled ordinary differential equations for A, (1), A_(7):

Ay =oAL —(BIAP +y|ALDAL. A_=aA — BIAP +yIA_ DA &P
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where "= d/dr, and

1 iD D +i(D? + w})/ 82 2(3D? + 4wj) +iDBD? + 23)/ 2 )
T4 42 K@D+ ) re DK> (9D? + 16w3) ' ’

This result favorably agrees with that of [20] when we set AL = A. A_ = 0. The needed stability analysis is,
consequently, a little more involved than that in [20]. Let us define the new variables

w=|AL?+ 1A v=|ALP — A" (33)
By using (31), we obtain the following system for i and v:
12-—_2Reau—Re()/+ﬁ)u2~Re(y—ﬁ)vz. v=2Reav—2Reyuv. (34)

Clearly, u = v or u = —v correspond to traveling wave (TW) solutions, while v = 0 corresponds to standing wave
(SW) solutions. The phase portrait corresponding to «, 8 and y of (31) is easily found (see Fig. 2), and the explicit
solutions are (up to, possibly, a constant phase shift)

A1) = gz——)a/—e””f A (1) =0, u:lma—L—n;%Rea (35)
v ) [A_]
/
/
5,
lvl<u ?
vl
Ve .
//[T,/
0 u ? /‘ ‘|A+\
S
/ /
: /
/
/
7 % )
/ /
(@) (b)

Fig. 2. Phase planes (a) (. v), and (b) (A4 ]. |[A_]) showing the critical points corresponding to traveling (TW) and standing wave (SW)
solutions.
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o, =11K, /19

0)2
™
®, =19K, /56
SW
SS SS

TW
SS /
SS /// Q, =K,/4

Fig. 3. Stability diagrams (K;. wy) near the tricritical point.

(or Ap(t) =0and A_(r) as A, (7) above) in case of TW solutions, and

‘ /| Reoa ive Im(y + 8)
= - = _— . = —_ 3
Ap(t) =A_(1) Re (y+ﬁ)e v=Imuo Re (y 7 B) Re o (36)

in case of SW solutions. Notice that both SW and TW bifurcate supercritically with ||rsw||/rrw > 1, as indicated in
Fig. 3: Re(B8 + y) and Re y are both positive when K> = I; whereas the square roots in (35) and (36) become pure
imaginary if K» = —1. This indicates that the bifurcating branches cannot be subcritical. From the phase portrait
corresponding to (31), it follows that the SWs are always globally stable, while the TWs are unstable. Such a result
was pointed out in [21], following completely different methods, while in [20] the analysis was restricted to the
case u2 = v2, and thus the TWs were erroneously found to be stable.

3. Multiscale analysis near the tricritical point

Asymptotic analysis near the tricritical point, P = (K /D =4, wp/D = 1) in Fig. 1, leads to the introduction of
a third timescale. In fact, near such a point,

K=K+ K2 +0@6Y),  wo=wyp+we’+0E%) (Ke=4D, wpe = D), (37)
and
K | K —_—
hi=-D+ 7&K - 16w(2)%—4%52j:2\/§D(K2-4w2). (38)

This shows that, besides the basic timescale (which is denoted by ¢), and the slow time T = &% (as in {20}, an
intermediate scale, say T = ¢, appears. Compare
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. K V8D{(K2 — 4wn
eAI ~ exp 2 T+ —i;—aj_)T (39)
4 4
with (18) above. Consequently, the slightly different ansatz
40)

4

1 .

oy — Iy 5

pO. 1w e) = o exp E gloj0.1.T.7) 4+ 0(")
j=1

is needed. Inserting (37) and (40) into the governing equations (5)~(8) leads to the hierarchy below. instead of

(19)-(21):
2
Lo = (0 — DBH2 + woy)o; + 4Dy {Im e i (e o1)} =0, /01 dg =0, 41)
¢}
5 2 "
oy ; —ib it . o
£(62+—;):—4D69{U|Ime (e ,U])}—0TU1. /(024‘—;’—) dé =0, (42)
2 / 2
af
Loy +oi02+ ?
) . 0'2 02
= —4D 3 {01 Ime™" <e'9 Lo1+ ~7i> + <o’2 + q' ) Ime ", o1) + wpIme (e, o))
| (43)
, —if it 97
— KyopIme ™™ o) — 0,0y — 01 ((ﬁ—}——;),

2

2x
a3 0102 _,) .
0

2 (Ilﬂﬂ UI
L U4+U|Uz+—+ +ar
‘713 (’l3 6 i
+ O'3+(7|(72+? Ime™"" (" ,o1)

= —4Dady ‘01 Ime™* <ei9'. oy + o102 + 3
ol l o a2 o2
' > + wroy Ime? (e o) + (02 + 7') Ime ¥ <e'” .02 + Tl>] (44)

o
.02+ 5
2 o o2 o2
>+ oy Ime " (e" ,01)}— a7 <O'2 + ‘oL) — a7 <03 + o102+ —;—)

— K> 8 {Ime"“ <e“". o + %

+ w>rIm e <ei

4
')dH:O.

2
2 (7102 c
(74+<7101+~+ > +Z
)

(
Here
(45)

27 4o

1
(a(f, w), B, w)) = 2~/ / a0, w)B(6. a))gmn(w)df)da),
0

—00



88

L.L. Bonilla et al. /Phvsica D 113 (1998) 79-97
where

2oy (@) = 38 (w + wp) — 8" (@ — wp)]  (wp = wie = D).

(46)
The solution of the homogeneous equation (41) for o is immediately found (£2 = 0in (23)):
A(T, .
gy = ~——( .t)e‘H >
D+iw

(47)
plus terms which decay exponentially on the fast timescale, ¢, and which we will systematically omit. Inserting this
into Eq. (42), we obtain

(48)

— me +cc +

2i4 B(T.7) i
- —e” +cCc + ——e - CC,
(D +1w)2D + iw) D +iw

(49)
and hence 7. Note that the term containing B(T. 1) is the solution of the homogeneous equation associated to £
(cf. (47)). Proceeding in a similar way, we obtain

+ + 613
ooy + —
a3 102 6
Ky — 4w Br . Arr A, C(T. 1) AlA? o
= - - - e
4D(D +iw) (D+iw)?  (D+iw) (D+iw)?  D+iw (D+iw)?2D +iw)
tooy HAB—AATU/D +iw+ 1/2D + i) S Aded
cc e cc
(D +ie)(2D + iw)

: ; — +cc, (50
(D+10)2D +iw)(3D + iw) (30)
where C = C(T, 7) has a meaning similar to that of A and B. From this we obtain o3, and finally, from (45), a4

To obtain the leading order approximation, we only need to determine A(7T, 7). Now, (50) holds provided that the
non-resonance condition (needed to remove secular terms)

|
< —. P(w. T.T)>:O
D +iw

(S
holds. where P(w.T. 1) denotes the coefticient of ¢ on the right-hand side of (43). Eq. (51) turns out to be the
“complex Duffing equation™

D 2005
Arr — S (Ky—dw)A — £|APA = 0.

(52)
Such an equation, however, is nof sufficient to determine A, in view of the fwo timescales on which A depends. The
non-resonance condition for o4, i.e. an equation like that in (51) where P(w, T, ) now denotes the coefficient of
e'” on the right-hand side of (45). is the “linearized inhomogeneous Dufting equation™

Brr — 2Ky — dom B — 2(ATB +2/ARB) = —247, + X2 (4P4), 23
rr = 5 (K= do)B = SATB+2APB) = <247 + Ay — oL~ Al Ay
where an overbar denotes taking the complex conjugate.

. 53
25D ()

Eqgs. (52) and (53) could be analyzed directly, e.g., by extending the Kuzmak-Luke method (see [25, Section 4.4]),
to find the bifurcating solutions in the vicinity of the tricritical point and their stability. However, we can take
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advantage from the already existing, rather comprehensive theory of amplitude equations for systems invariant
under the O(2) group of rotations (8 — @ + ¢) and reflections (¢ — —6, w — —w) developed by Dangelmayr
and Knobloch in [23]. Our nonlinear Fokker-Planck problem has this symmetry, therefore the normal form near the
tricritical point (a Takens-Bogdanov bifurcation) should be the same one that Dangelmayr and Knobloch studied.
Egs. (52) and (53) in fact can be used to reconstruct the scaled “normal form™

. d
odr
studied by Dangelmayr and Knobloch in [23] (cf. their Eqs. (3.3), p. 2480); recall that T = &t is the slow scale.
Setting

I3

U’ —¢eleyU 4+ e(UU +UUYU +c3]UPU) = (ca + es|UPHU = O(eD), (54)

U=AT.1)+eB(T, 1) = A(T.eT)+e¢B(T.eT) (55)

in (54), we obtain equations for A and B which are of the same form as (52) and (53). We can then identify the
parameters termed i, v, A, C, D in [23], and thus M = 2C + D there, with our quantities

D K» 2 ] 28 38 ,
—(Ky —dwn), —, -, ——, — s TR (56)
2 2 5 5D 25D 25D
respectively. With these identifications, Eq. (54) becomes
U D(K dan)U 2|U|2U K U 23 \UPU ! (UPPU)T )| +0(?) (57)
T — = - - = =t —=—Ur— —= - = - £%).
Tyt T aen 5 2 T 725D "7 5p T ‘

Note that —2A7.¢ = O(£2). The general analysis developed in [23] for Eq. (54) can be used for the present case,
Eq. (57) (cf. [23, Eq. (3.3)]). We make the substitution

U(T; &) = R(T; e)e'®T:® (58)

in Eq. (57), separate real and imaginary parts, and then obtain the perturbed Hamiltonian system

oo 2V Ky 38 Rl) . . Kr 28 5\ 5,
rt— == - —— . r=¢el|l-=— .
TSR 2 “aspt )T "=\ " 25D (
where

L= R¢r (60)

is the angular momentum, and

2 4

V—V(R)—L D(K dan) R? R 61
= ToRz 4 hrTTen 10 6h

is the potential. This system may have the following special solutions (whose stability properties are also pointed
out here):
(1) The trivial solution, L = 0, R = 0, which corresponds to the incoherent probability density, p = 1/27. Such

solution is stable for K2 < 0if wy > 0 and for (K7 — 4an) < 0if wr < 0.

(i) The steady-states (8S), L = 0, R = Ry = /3D (w2 — K2/4) > 0, which exists provided that wy > K»/4.
This solution is always unstable.

(iii) The traveling waves (TW), L = Lo = Rg\/ZD (w2 — (19/56)K3) > 0, R = Ry = % DK>/14 > 0,
which exist provided that K> > 0 and wy > 19K;/56; these solutions bifurcate from the trivial solution at
K2 = w2 = 0. When w2 = 19K3/56, the branch of TWs merges with the steady-state solution branch. This
solution is always unstable.
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Fig. 4. Bifurcation diagram (K. R) near the tricritical point forwy > D fixed. K* is the coupling at which a subcritical branch of stationary
solutions bifurcates from incoherence. -

(iv) The sranding waves (SW), L = 0, R = R(T) periodic. Such solutions have been found explicitly in Section 5.1
of [23]. The SWs branch off the trivial solution at K> = w> = 0, exist for wr > 11K3/19 > 0, and terminate
by merging with a homoclinic orbit of the steady-state (ii) on the line wp = 11K>/19 (see Eq. (5.8) of [23]).
This solution is always stable.
All these results are depicted in Fig. 3. which corresponds to Fig. 4, 1V-, in the general classification (stability
diagrams) reported in [23, p. 266].
In Fig. 4, the bifurcation diagram relevant to the present problem with w; > 0 is given (cf. Fig. 5, IV-, in [23,
p- 267]).
Note that the modulated wave solutions (in the terminology of [23]), i.e. with both L and R periodic functions,
in general with different periods, do not appear in the problem studied in the present paper.
In closing, observe that, to the leading order, Eq. (40) vields

1 Rel@+6)
0. tiwig)~— |1 +e—— . 62
pO.fwie) ~ o T empm e ©2)
and hence, from (7),
) R .
re”p ~ 856_14). (63)
It follows that
R

which shows that, essentially, the solution U (T'; ) to Eq. (57) coincides with the conjugate of the complex order
parameter (defined by (7)). For this reason, in Fig. 4, the ordinate can be either R or r. In Fig. 5, we depicted the
global bifurcation diagram which completes the analogous one given in [20], ¢f. Fig. 5 there.
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K_=4D K, K- K

Fig. 5. Global bifurcation diagram including all stationary solution branches for wy > D fixed as conjectured from the information on
bifurcating branches available near the tricritical point. The location of the turning point K = K| depends on the actual value of wg. The
exchange of stabilities at the turning point is postulated, not demonstrated. Numerical simulations show that there is a narrow region of
bistability between the SW and upper SS branches for wg = 1.5D. This region vanishes for awy = 2D.

4. Numerical results

The goal of this section is to give numerical evidence of the theoretical results obtained thus far. To perform this
task, we have integrated the stochastic equation (4) by a first-order Euler method with a time step At = 0.005. In all
our simulations a population of N = 50 000 has been chosen, which is large enough to neglect finite-size effects.

The interesting region in the space of parameters is located above the tricritical point (K/D = 4, wo/D = 1).
To explore this region and without loss of generality, we have kept fixed the strength of the noise to D = [. Then
we have set wg = 2, and we have swept the phase diagram by moving the coupling constant, K, thereby finding
different behavior according to the results of the previous sections. Consistently with the figures depicted above,
we have considered only values K > 4, for which the incoherent solution p = 1/27 is unstable. For these values
of K, the (partially) synchronized SW states bifurcate supercritically and are stable until the SW branch disappears.
In this section we define the order parameter (3) or (7) in such a way that r(¢) € [—1, 1] and that the phase does not
experience jumps as it increases past odd integer multiples of r. Then the order parameter which we should use to
compare with the results of previous sections is |7 {¢)| > 0.

Let us start the discussion considering K = 5.2 . In Fig. 6, we can see that, after a short transient, the order
parameter |r(t)| reaches a stable state characterized by time-periodic oscillations of large amplitude. Clearly, this
value of the coupling constant belongs to the domain of the SW solution. This periodic behavior is found as soon as
K becomes larger than 4, but near the critical point the frequency of the oscillations is very high (recall that wg = 2)
and their amplitude quite small. This is why we do not depict such a behavior in any of the figures. Moreover,
when K = 5.2, the Fourier transtorm of the order parameter exhibits a large peak at a non-zero frequency, which
corresponds to a relaxation oscillation. This peak slowly fades out as K decreases down towards K = 4 (near the
bifurcation point the oscillation becomes sinusoidal).



______
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Fig. 8. Time evolution of the order parameter towards the stable synchronized stationary solution forwy = 2, D = land K = 7.

The opposite behavior is found for larger values of K. In comparison with the last figure now the amplitude of
the oscillations increases while the frequency decreases in a non-trivial way with the coupling constant as we can
see in Fig. 7 for K = 6. The system still remains in the domain where the SWs are stable.

According to the theory, the SW solution should merge with the SS solution for values of K large enough. Indeed,
this is what we observe in Fig. 8. In this case for K = 7 the order parameter grows exponentially fast from the
initial incoherent solution to the time-independent partially synchronized stationary state. The conjectured global
bifurcation diagram of Fig. 5 suggests that there may be a region where the SW and the partially synchronized
stationary solution are both stable. In order to detect the presence of bistability, it is more convenient to use a
deterministic numerical method to solve the nonlinear Fokker-Planck equation. In fact, the Monte Carlo simulation
averages over realizations of the noise. Then different realizations may go to different stable solutions in the
bistability region, unless we are rather careful choosing convenient initial conditions within the basin of attraction
of one solution, and a small enough time step. Then we need an enormous amount of computing time for a Monte
Carlo simulation to distinguish the attractor with smaller basin of attraction in the bistability region. Thus we have
used deterministic numerical simulations (finite differences) of the nonlinear Fokker—Planck equation to obtain the
results reported below, although we have checked that costly Monte Carlo simulations also yield the same results in
several points of the bifurcation diagram. A direct numerical simulation of the nonlinear Fokker—Planck equation

-

-
Fig. 6. Time evolution of the order parameter |r(t)| for coupling strength K = 5.2, and D = 1, wy = 2. Time is measured in seconds.
where one second means 200 time steps. We have considered as initial condition the incoherent solution p = 1/27.

Fig. 7. Time evolution of the order parameter | (t)| for a larger value of the coupling constant, K = 6. As in the previous case there are
oscillations but now their amplitude is larger as well as the period.
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Fig. 9. (a) Time evolution of the order parameter in the parameter region wy = 1.5, D = land K = 4.95 where SW and 58 solutions are

both stable: different initial data evolve to one of these solutions. (b) Details on the end of the SW solution branch and abrupt transition
to the SS at K = 4.9598.
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Fig. 10. Time evolution of the order parameter in the parameter region wy = 2, D = 1 for K = 6.03, 6.04. 6.05 illustrating the smooth
transition between the stable SW and upper SS solution branches. For this value of wy there is no bistability between SW and SS solutions.

by finite differences shows that for sufficiently large wg the region of bistability disappears. At wg = 1.5 we have
found a narrow region of bistability between SW and SS solutions which is illustrated in Fig. 9 and Fig. 9(a) shows
that different initial data evolve either to the SW or to the upper SS solution for K = 4.95. Fig. 9(b) illustrates the
abrupt transition from an SW solution to the upper SS solution when K changes from 4.9597 to 4.9598. When wy
is larger. wp = 2 as in Fig. 10. direct simulations show a smooth transition from SW to SS. This may correspond
to having the turning point K; of Fig. 5 close to the end point of the SW branch.

5. Summary

We have used the method of multiple scales to study synchronization to oscillatory phases in the mean-field
Kuramoto model with a bimodal frequency distribution. Near the Hopf bifurcation points our method recovers
Crawford’s results: solution branches of stable standing waves (SW) and unstable traveling waves (TW) issue
supercritically from the incoherent (non-synchronized) state. Near the tricritical point (where a line of Hopf bi-
furcations and a line of partially synchronized stationary states coalesce) our multiple scale method recovers the
normal form for symmetric Takens—Bogdanov bifurcations studied by Dangelmayr and Knobloch. This study al-
lows us to establish that the bifurcating branches given by the local analysis of Section 2 end as infinite-period
bifurcation solutions. The unstable TW branch terminates on the SS branch, whereas the SW branch collides with
the homoclinic loop of the SS branch in a global bifurcation of finite amplitude. All results obtained in Sections 2
and 3 agree quantitatively, as it can be shown by asymptotic matching (see Appendix A). Furthermore, there may be
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an interval of parameter values where SW and partially synchronized stationary solutions are both stable. Brownian
and direct finite-difference simulations (Section 4) confirm these results.
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Appendix A

The bifurcation diagrams in Sections 2 and 3 agree in the sense that the corresponding solutions match asymp-
totically on some overlap domain. For instance, in case of TW solutions, A} # 0, A_ = 0, one obtains from
(31)

2\4 " 5K,

A ~ Ryexplior — il (24 Ko
V2Dw>r \ 4 5K;

~ Roexp[iT {\/ZD(UQ — L <B + Rg )i“

(A.1)

where Ry is a constant to be found by asymptotic matching, and tD/2 ~ K2T/D/2w; = O(1), K> > 0 fixed,
as wy — 0 from above. On the other hand, near the tricritical point, it is shown in Section 3 that

W PpK [ 19
56 Py EEA®r T 5602

Let us fix w2 > O in this equation and let K» — 0 from above. Then

2D Yk~ 2D 9, [P (A3)
@27 5g "2 T S N2 2 -

and inserting the latter into Eq. (A.2), asymptotic matching with Eq. (A.1) yields

25
Ro =,/ —DK>. .
0 ‘/56 2 (A.4)

The more involved case of the SW branch can be handled in a similar way, resorting to the results of [23].

. (A2)
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