
PHYSICAL REVIEW E, VOLUME 63, 056216
Chaotic motion of space charge wave fronts in semiconductors under time-independent
voltage bias
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A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied
numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistiv-
ity, and applied voltage—such that the sample is biased in a regime of negative differential resistance—we find
chaos in the propagation of nonlinear fronts~charge monopoles of alternating sign! of electric field. The chaos
is always low dimensional, but has a complex spatial structure; this behavior can be interpreted using a
finite-dimensional asymptotic model in which the front~charge monopole! positions and the electrical current
are the only dynamical variables.

DOI: 10.1103/PhysRevE.63.056216 PACS number~s!: 05.45.2a, 47.54.1r, 41.20.2q
ns
uc
ing

r
d
t
r

r

l-

e
em
t
n

ia
in
ih

a
n
t
e

eri-
t of

olt-
ctor
ns,
of

ical

ex-
es
of
e

tion
pen.
hat
iple
ts
as
ns

ro-
m-

ion

e-
ent

t a
ga-
tors
t
at

to
uf-
tic
en

m

I. INTRODUCTION

The dynamics of propagating solitary waves~pulses! and
monotone fronts in nonlinear partial differential equatio
~PDE’s! have been the focus of extensive research. S
problems are of interest in a wide range of fields includ
biology ~population dynamics! @1#, chemical reactions and
combustion@2,3#, plasma physics@4#, and semiconducto
electronic transport@5#. A common problem is to understan
and predict the form and speed of the waves, as well as
possibility of multiple excitations in a sample of finite o
infinite extent, and their interactions. We focus here on
model of electrical conduction in extrinsic semiconducto
~involving time and only one spatial dimension!, which ex-
hibits negative differential resistance~NDR! and moving do-
mains of high electric field. The model is specifically re
evant to experiments on cooled bulkp-type Ge under voltage
bias conditions@6,7#, but much of the observed qualitativ
behavior applies to a broad class of semiconductor syst
with space charge instabilities. Phenomena observed for
p-Ge system include time-periodic oscillation of the curre
in a purely resistive external circuit under dc voltage b
due to the periodic creation of a solitary wave at the inject
contact, its motion inside the semiconductor, and its ann
lation at the receiving contact@7#. There is some similarity to
the Gunn effect inn-GaAs, except that~i! the local current
density versus field characteristics@seej (E) below# in p-Ge
presents an increasing third branch after the NDR region,
~ii ! the solitary waves inp-Ge move much more slowly tha
the carrier drift velocity~the case in the usual Gunn effec!
due to the generation-recombination dynamics of ioniz
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traps that dominate the transport properties. Other exp
mental observations include intermittency near the onse
the oscillatory instability@8,9# and ‘‘spatiotemporal’’ chaos
under combined dc and ac voltage bias@10#. Another impor-
tant feature is the integral constraint that corresponds to v
age bias applied across sample contacts in semicondu
problems. Integral constraints also occur in other situatio
for example expressing mass conservation in problems
phase separation in binary mixtures and in certain biolog
problems@1,11,12#.

Many of these phenomena have been successfully
plained by means of a drift-diffusion model, which includ
impurity trapping of mobile holes and impact ionization
neutral acceptors@6,13#. Although much work has been don
on this model problem~see@14# and references therein!, im-
portant basic questions concerning its asymptotic descrip
and chaos under time-independent voltage bias are still o
In this paper, we present numerical simulation results t
show chaos under dc voltage bias associated with mult
shedding of wave fronts. Multiple shedding of wave fron
occurs for appropriate values of contact resistivity, and w
recently predicted on the basis of asymptotic calculatio
@15#. Here we introduce a finite-dimensional model that p
vides a simplified description of space charge wave dyna
ics in long samples. This model uses relevant informat
from the asymptotics in Ref.@15#, although we do not rigor-
ously derive it from such asymptotic calculations. Neverth
less, solutions of the simplified model are in good agreem
with the results of direct numerical simulations.

The paper is organized as follows. In Sec. II, we presen
drift-diffusion model that accurately describes the propa
tion of space charge wave fronts in extrinsic semiconduc
under dc voltage bias such asp-Ge. In Sec. III, we presen
numerical simulation results of the drift-diffusion model th
indicate that wave fronts may propagate chaotically due
multiple shedding of wave fronts for appropriate bias in s
ficiently long samples. Section IV presents the asympto
model and numerical simulations thereof, which are th

ail
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CANTALAPIEDRA, BERGMANN, BONILLA, AND TEITSWORTH PHYSICAL REVIEW E63 056216
compared with results from the drift-diffusion model. Co
clusions are finally presented in Sec. V.

II. THE REDUCED DRIFT-DIFFUSION MODEL

In dimensionless form, the drift-diffusion model equ
tions for a sample of lengthL can be written in a form
@16,17#

]2E

]x]t
1J

K1R

V2 S V8

K1R

]E

]t
1V

]E

]x
1 j ~E!2JD5

1

V

dJ

dt
,

~1!

1

LE0

L

E~x,t !dx5f, ~2!

E~0,t !5rJ~ t !. ~3!

The first equation describes the spatiotemporal evolu
of the electric fieldE(x,t) inside the sample, whereJ(t) is
the total current density. The transport coefficientsV, K,
andR are, respectively, the average~drift! velocity of micro-
scopic charge carriers~holes in the case ofp-Ge) and coef-
ficients describing the creation of free carriers via impur
impact ionization and the destruction of free carriers by c
ture onto an available impurity trapping site~i.e., neutral
acceptor!. All are nonlinear functions of electric field, an
their forms and plots have been discussed extensively in
literature@5,13,14#. In this paper, we use the same forms
in Ref. @14#. Equation~2! is a global constraint that express
the voltage bias condition, and Eq.~3! is a boundary condi-
tion that represents the Ohmic injecting contact atx50 with
contact resistivityr.0. We refer to Eqs.~1!–~3! as there-
duceddrift-diffusion model because they are derived from
full drift-diffusion model by systematically dropping term
that correspond to short length and time-scale processe
diffusion and displacement current, respectively. For a p
cise derivation as well as a complete table of convers
factors to dimensional units, see@5# and@16#. Some of them
are time 2.131023 ms, length 0.01 mm, electric field 1
V/cm, density current 128.16 mA/cm2, and cross-sectiona
area 0.16 cm2. We have adopted the same symbol for bo
dimensional and nondimensional variables.

The qualitative nature of much of the dynamical behav
found in the reduced drift-diffusion model—e.g., the ins
bility of the stationary electric-field profile and propagatin
high-field domains@17–19#—depends only on the presenc
of a region of negative slope of the homogeneous station
current density j (E)5V(E)$aK(E)/@K(E)1R(E)#21%,
@14,17,18# over an interval of positive fields, and not on th
exact form of the underlying coefficients. This is particula
true when the sample is closely compensated~the ratio of the
acceptor concentration to the donor concentration,a, is only
slightly larger than 1!. Then j (E) is N-shaped for large
enough positive fields: there is an interval (EM ,Em) between
the abscissa of the maximum@ j (EM)5 j M# and the mini-
mum @ j (Em)5 j m.0# current density, for whichd j /dE,0
and j (E).0, as shown in Fig. 1. Also shown in Fig. 1 is th
injecting contact characteristic, which plays a crucial role
05621
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determining when new fronts are injected into the samp
The critical current densityJc corresponds to the intersectio
of the contact characteristic with the homogeneous station
current density. The role ofJc has been elucidated using
rigorous asymptotic analysis of the system Eqs.~1!–~3! in
the limit asL→` @15#, and is discussed further in Sec. IV

III. NUMERICAL RESULTS

To solve the system of Eqs.~1!–~3! for E andJ, we dis-
cretize the equations using finite-difference approximatio
to the derivatives and employ an implicit method to gener
the solution. The initial condition for the electric field i
spatially uniform with a value that is consistent with th
global constraint, Eq.~2!. In Fig. 2, we show a space-tim
plot of the electric field and associated current density
f56.25 V/cm, just above the threshold voltage value
which propagating domain behavior occurs. The gray sc
ranges from 5.3 V/cm~black! to 14.2 V/cm~white!, and this
scale is used in all similar plots that follow. The dimensio
less sample length is 3800 corresponding to a realp-Ge
sample of length 3.87 cm, and the contact resistivityr is
780 V cm corresponding to a value of 10.0 in dimensionle
units. This case corresponds well to experimental data,
published data inp-Ge were only presented for one samp
and relatively low bias values and contact resistivity. W
clearly see that a single domain moves across the samp
constant speed, until it reaches the receiving contact. A
disappears, a new wave is created at the injecting contact
the process repeats periodically. The current versus time
indicates that the current is steady when the domain mo
in the sample interior, while there is an increase when
domain reaches the receiving contact. It is important to n
that the fronts of changing electric field~or equivalently, the
regions of nonzero charge density! are sharp in space relativ
to other physical length scales for this problem, i.e., the
tent of the flat top domains or the sample length. We ha

FIG. 1. Stationary homogeneous current density,j (E), and
linear contact characteristic for a sample with the cont
resistivity, r5780 V cm, and compensation ratioa5~acceptor
concentration!/donor concentration!51.21.
6-2
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CHAOTIC MOTION OF SPACE CHARGE WAVE FRONTS . . . PHYSICAL REVIEW E 63 056216
found that this separation of length scales increases
sample length and holds for most biases of interest. It is o
for voltages near the onset point that one tends to obs
rounded solitary waves rather than well-separated pair
fronts; this is the dominant space charge wave structure
served in shorter samples and has been extensively rep
@14,17,18#.

As the bias increases, the propagating domain beco
fatter and eventually a second small domain is nucleated
propagates part of the way into the sample, but it dies be
reaching the receiving contact or merging with the larg
domain. At even larger bias values, the second dom
merges with the primary domain near the receiving cont
and this situation is shown in Fig. 3, which corresponds

FIG. 2. Space-time evolution of the electric fieldE(x,t) and the
corresponding current densityJ(t), with parameter values
f56.25 V/cm andr5780 V cm. The gray scale ranges from 5
V/cm ~black! to 14.0 V/cm~white!.

FIG. 3. Space-time evolution of the electric field and the cor
sponding current forf57.25 V/cm.
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f57.25 V/cm. Again the current is plotted on the far rig
of the figure. When the first domain reaches the receiv
contact, the current increases. Instead of immediately star
the nucleation of a new wave, the area lost by the dy
wave is gained by the trailing wave; note that the width
the trailing wave increases after the leading wave starts
disappear. The current increases, reaching a local maxim
just before the trailing domain touches the leading doma
that is, the fronts collide. The current increases abruptly a
the front collision and it rises to a global maximum, at whi
point a new domain begins to nucleate at the injecting c
tact. As the domain forms, the current decreases and rea
a minimum, at which point a new domain detaches and
gins to propagate. Then the current increases until a sec
smaller domain is nucleated. Finally, the current settles t
rather low constant level as the two domains move stea
and in unison across the interior region of the sample. C
rent behavior is apparently dominated by the major eve
involving the fronts: collisions with the contacts or with ea
other. This suggests the viability of a dynamical model th
focuses on discrete front motions and the currentJ(t).

At larger biases, the portion of the sample occupied by
high-field valueE3 is larger, reducing the separation betwe
domains, and giving more complicatedE(x,t) structure and
J-t behavior. In Fig. 4, we show a space-time plot and c
rent for what appears to be a chaotic state for an applied
of f510.0 V/cm. The spatiotemporal dynamics posses
great deal of structure and complexity. The process of m
tiple domain shedding is similar to that for the previous ca
The large current peaks correspond to nucleation of lead
domains. The leading domains cross the sample with
catching up or forward-colliding with any other high-fiel
regions, and are indicated by dark regions that extend all
way across the space-time diagram. Note also the larger
tial extent of the leading domains than in Figs. 2 and 3. T
aperiodicity of the current is reflected in the irregular appe
ance of the maximum current peaks or, equivalently, of

-

FIG. 4. Space-time evolution of the electric field and the cor
sponding current for a chaotic state withf510.0 V/cm and
r5780 V cm.
6-3
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dark strips that extend across the entire sample. In betw
them are a number of local maxima corresponding to
shedding of trailing domains.

Figure 5~a! shows a bifurcation diagram in which we plo
all values of successive current maxima as a function off.
An important feature in this diagram is the apparent prese
of windows of chaotic behavior with a large number
points being visited. For periodic states, we see a small n
ber of points corresponding to perfectly repeating curr
maxima. Also, in the periodic regimes there are points wh
various branches merge or disappear and these correspo
the development or destruction of trailing domains. For
parameter values selected here, we do not observe pe
doubling. We conjecture that the route to chaos here is
boundary crisis type in which the attractor collides with
periodic orbit on its basin boundary@20#.

In Fig. 5~b!, we show the largest Lyapunov exponentl1
versusf for the reduced drift-diffusion model. This unam
biguously confirms the presence of chaos in the ‘‘chaot
windows. The next two exponents have been calculated
are never positive, so that the chaos we see is of a l
dimensional variety. To compute the exponents, we used
algorithm outlined in Ref.@21# adapted for use with partia
differential equations and using adaptive control of the in
gration time step@22#. The values ofl1 are zero in the pe-
riodic regimes as they should be for periodic behavior. T
smallness ofl1 in the chaotic regime is easily understood
recalling the period of the system, about 1000 nondim
sional time units. This indicates that the chaos originate
processes that occur on time scales on the order of the
transit time across the sample. To our knowledge, this is
first time that chaos due to multiple shedding of wave fro
has been observed in a drift-diffusion model of this typ
This type of chaotic behavior has not been reported for
periments onp-Ge with time-independent voltage bias, mo

FIG. 5. dc bias bifurcation diagram:~a! local maxima in the
current and~b! largest dimensionless Lyapunov exponent.
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likely because experimentally studied samples were
short, biases were not sufficiently large, or contact resistiv
was too low. However, in early experimental studies of t
Gunn effect in GaAs, Gunn@23# observed that for long
samples, current oscillations were almost completely r
dom, resembling white noise. He also found that sh
samples produce aperiodic oscillations when circuit imp
ance is sufficiently large. It is plausible that Gunn may ha
observed a similar form of chaos to the one we have fou
numerically. In the next section, we develop an asympto
model in which the chaotic dynamics is understood to ar
from the aperiodic nucleation of fronts at the injectin
contact.

IV. ASYMPTOTIC MODEL

The asymptotic model used in this paper consists of
scribing the evolution of the current when all wave fronts a
detached from the injecting contact by an appropriate o
nary differential equation~ODE! for J, tracking the position
of the wave fronts and proposing a simplified mechanism
creation and destruction of wave fronts. While our ne
model is compatible with the asymptotic calculations of R
@15#, we have not rigorously derived it from these calcu
tions. Instead, we have proposed a simplified dynamics
account for our numerical observations motivated
asymptotic results.

We begin by assuming thatEM,f,Em in Fig. 1 and that
EM / j M,r,Em / j m . Then a Gunn effect mediated by sol
tary waves occurs@24#, as shown by the numerical simula
tion in Fig. 2. For appropriate parameter values, there
pears a regular oscillation of the current caused by repe
creation, motion, and destruction of high-field domains in
sample. High-field domains are formed by two wave fron
separating a region where the electric field is uniform a
large from regions of uniform low field. Clearly, there a
positively and negatively charged wave fronts, havi
]E/]x.0 or ]E/]x,0, respectively. Near the contact
there are narrow boundary layer regions where the elec
field changes abruptly. Creation of high-field domains occ
at the injecting contact, via an instability of the bounda
layer, which expels a high-field domain from the injectin
contact to the bulk of the sample. Typically, the total curre
changes most during wave-front creation and destruc
events. In the limit asL→`, space and time scales arex/L
and t/L, respectively@15#. Then j (E)5J, except in wave
fronts and boundary layers at the contacts. If the field pro
consists of a single high-field domain detached from the c
tacts, we haveE5E3(J) inside the domain andE5E1(J)
outside, whereE1,E2,E3 are the three zeros ofj (E)2J
for j m,J, j M @15#. High- and low-field regions are joined
by wave fronts, which are the unique solution of Eq.~1!
~with zero right-hand side! in the moving coordinatex5x
2X6(t), dX6 /dt5c6(J) ~the signs1 or 2 refer to the
charge inside the wave front!, and appropriate boundary con
ditions. For example, at a positively charged wave fro
E→E1(J) as x→2` and E→E3(J) as x→1`. The nu-
merically determined values ofc6(J) are shown in Fig. 6.

Boundary layers obey~most of the time! a quasistationary
6-4
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CHAOTIC MOTION OF SPACE CHARGE WAVE FRONTS . . . PHYSICAL REVIEW E 63 056216
version of Eq.~1! with appropriate boundary conditions on
semi-infinite spatial support. The instantaneous value of
current J(t/L) determines the field profile in the low an
high uniform-field regions and the velocity of the wav
fronts.

Next, assume that we have an initial field profile cons
ing of N high-field domains~solitary waves!, each formed by
two wave fronts located atX1

( i )(t),X2
( i )(t). We shall number

the wave fronts so thatX6
( i )(t).X6

( i 11)(t), and if necessary

we shall considerX2
(1)5L and X1

(N)50. Then the positions
X6

( i )(t) are given by

X6
( i )~ t !5E

tb,6
( i )

t

c6„J~s!…ds, ~4!

wheretb,6
( i ) denotes the time at which thei th monopole~with

positive or negative charge! was born atx50.
The evolution of the total current density is determined

the bias condition~2!, which may be approximately evalu
ated as

f5E1~J!1@E3~J!2E1~J!#(
i 51

N X2
( i )2X1

( i )

L
~5!

~terms of order 1/L and smaller have been ignored here; n
that theX6

( i )/L are of order unity!. We can get an ODE forJ
by differentiating Eq.~5! with respect to time and then sub
stituting dX6

( i )/dt5c6(J) in the result. We obtain

dJ

dt
5

1

L

~E32E1!2

f2E1

j 38
1

E32f

j 18

~n1c12n2c2! ~6!

dX1
( i )

dt
5c1~J!,

dX2
( i )

dt
5c2~J!, ~7!

FIG. 6. This figure shows the velocities of the heteroclinic orb
betweenE1(J) and E3(J), c1 and E3(J) and E1(J), c2 vs J,
both of them in dimensionless units.
05621
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where i goes from 1 toN. The quantitiesn1 and n2 are,
respectively, the number of positive and negative monopo
detachedfrom the contacts~i.e., excluding possible mono
poles atx50 andx5L), while j 18 and j 38 denote the deriva-
tive of the staticj (E) characteristic with respect to electr
field, evaluated atE1 and E3, respectively. Notice that the
system of Eqs.~4!–~7! completely specifies the behavior o
current and field profile on the scalesx/L and t/L, except
that we do not have conditions for determining when n
fronts are emitted from the injecting contact.

We start with the simple case of Fig. 2: the motion of
single high-field domain far from the contacts.J satisfies Eq.
~6! with n15n251, i.e., dJ/ds5A(J)@c1(J)2c2(J)#,
where s5t/L and A(J).0. As shown in Fig. 6,
c1(J)@c2(J)# is a decreasing~increasing! function of
the current. Therefore,J evolves exponentially fast towar
the zero of the right-hand side of this equation,J5J* . When
the leading wave front atx5X2 arrives atx5L, it disap-
pears almost instantaneously in the scales, and we obtain
dJ/ds5A(J)c1(J).0, so that the current increases. T
injecting boundary layer nearx50 ceases to be quasistatio
ary whenJ surpasses the valueJc at which the lineJ5E/r
intersects the second~decreasing! branch ofJ5 j (E). The
precise description of the instability, which results in exp
ling a narrow high-field domain fromx50 to the interior of
the sample, can be found in@15#. It is enough to say that a
certain semi-infinite problem has to be solved numerica
and matched to the resulting situation with a narrow hig
field domain@consisting of a region ofE5E3(J) bounded by
positively and negatively charged wave fronts# near x50
and a high-field region from a positively charged wave fro
to x5L. In the new situation, we havedJ/ds
5A(J)@2c1(J)2c2(J)#, andJ tries to go toward the zero
J5J1 of 2c1(J)2c2(J). Depending on the resistivity
r, Jc can be larger thanJ1 ~and thenJ decreases toward
J1), or JcP(J* ,J1) ~and thenJ starts increasing, and
second high-field domain may be expelled fromx50). The
simplest case,Jc.J1, was described asymptotically in@15#.
Providedf is large enough,J evolves exponentially fast to
wardsJ1. When the old domain leaves the sample, only t
wave fronts~bounding the new high-field domain! remain,
andJ evolves exponentially fast towardJ* , so that a period
of the oscillation is completed; see Fig. 2. The second ca
JcP(J* ,J1), is more complicated: numerical simulation
show that multiple high-field domains may coexist in t
sample at the same time as in Fig. 3.

To achieve a simplified description of the current oscil
tion, valid for any positive value ofJc , we proceed to ex-
amine further the shedding process. The simplest rule to
termine when a new wave front is shed from the injecti
contact would be as follows: a positive~negative! front is
emitted at the instant thatJ passes throughJc with positive
~negative! time derivative. However, this rule neglects th
time needed for sufficient charge to be injected at the con
to form a propagating front. We may estimate the effect
delay time by considering the time evolution of Eq.~1!
evaluated at the injecting contact,
6-5
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u̇1J
K1R

V
u5S 1

V
2rJ

V8

V2D J̇1J
K1R

V2
@J2 j ~E!#, ~8!

whereu(t)5]E(0,t)/]x and the argument ofV, K, andR is
E(0,t)5rJ(t), i.e., the value of electric field at the injectin
contact. In this equation, we can think ofJ(t) as driving
charge injection processes determined front launching. Ba
on extensive simulations of the reduced model, we h
found thatu(t) must attain a sufficiently large positive o
negative value for the front to detach and begin to propag
This value is generally found to lie between 50% and 90%
the steady state value thatuuu would have in the case of n
propagating fronts, i.e., whereE near the injecting contac
rapidly rises to theE3 value or rapidly falls to theE1 value.
The asymptotic model system is fully defined once
threshold is set and consists in Eqs.~4!–~8!. Thus, in the
limit of an infinitely long sample, terms of ordere51/L drop
and we arrive at a low-dimensional dynamical system, wh
consists essentially of propagating negative and posi
charge points that~i! move according to Eq.~4!, ~ii ! are
subject to the conservation law Eq.~7!, and ~iii ! produce a
measurable current according to Eq.~6!, and are created ac
cording to Eq.~8!. Note that in thee→0 limit, the current
will exhibit slope discontinuities at the formation timestb,6

( i )

and destruction timestd
( i ) , but will be otherwise continuous

and governed by Eq.~6!. We note that the rigorous founda
tions of this and similar asymptotic models have been
plored recently using singular perturbation methods@15,25#.

In this paper, we estimate the order of magnitude of
time delay associated with wave-front formation by evalu
ing Eq. ~8! for J'Jc . This implies a relaxation time of

t'
V

dJc

dt
2~a21!KV

, ~9!

i.e., the approximate time foru(t) to go from a value of
u(0)521 to u(t)50. By dJc /dt, we refer to the value of
dJ/dt whenJ crossesJc . Then, we adopt the criterion that
new front is born atx50 at the timet1at, wheret is the
time at whichJ5Jc , and at is a delay time. Herea is a
number of order 1 that is determined from simulation of t
reduced model for a particular bias voltage and then assu
to apply over the complete range. Wave-front destruction
assumed to occur instantaneously at timestd

( i ) when X2
( i )

5X1
( i 21) or whenX1

( i )5X2
( i )5L. We ignore the finite dura-

tion of ~fast! monopole destruction stages, which is equiv
lent to the well-justified approximation of neglecting the d
fusive boundary layer at the receiving contact@15#. It should
also be kept in mind that the index instantaneously decre
by one when wave fronts downstream collide with one
other.

Let us now use the above asymptotic model to interp
the simulation results for Eqs.~1!–~3!. The case of contac
resistivity such thatJc.J1 has been explained already: w
obtain the usual Gunn effect with at most one solitary wa
detached from the contacts for any time@15,25#; see Fig. 2.
Let us assume now that the contact resistivity is such
05621
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ed
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t

e
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JcP(J* ,J1). Then the current will increase after creation
a solitary wave, because 2c12c2.0, and multiple wave
shedding is possible@15#. This situation is shown in Fig. 7
which shows simulation results of our simplified asympto
model for similar parameters to those of Fig. 3. The latte
depicted using data from direct numerical simulation of t
reduced PDE model, Eqs.~1!–~3!. To obtain Fig. 7, the val-
ues ofa were set to 13.75 for positive front emission an
7.82 for negative front emission. We use these same va
in the data of Fig. 8, which has the same bias values as
4. The chaos appears to be closely tied to the asynchron
emission of fronts. This explains why the chaos observed
this partial differential equation system is low dimensional
is interesting to speculate how the maximal number of

FIG. 7. Space-time evolution of the electric field and the cor
sponding current density determined from the asymptotic mode
the period-2 state withf57.25 V/cm andJc59.983 mA/cm2.

FIG. 8. Space-time evolution of the electric field and the cor
sponding current density determined from the asymptotic mo
and showing a chaotic state for parametersJc59.983 mA/cm2 and
f510.0 V/cm.
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mains possible might scale with system size and contac
sistivity.

V. CONCLUSION

We have utilized asymptotic analysis of a PDE mod
~which describes the trap-dominated slow Gunn effect i
long sample! to explain the dynamics of space charge wav
and current vs time, including low-dimensional chaos, wh
is nonetheless accompanied by spatially complex struc
suggesting a loss of spatial coherence. The building blo
of this analysis are the heteroclinic orbits used to const
the typical solitary waves mediating Gunn-like oscillation
During most of the oscillation, the motion of the heteroclin
orbits and the change of the electric field inside and outs
the solitary waves~enclosed by heteroclinic orbits! follow
adiabatically the evolution of the total current density. Wh
a solitary wave reaches the receiving contact, the cur
increases abruptly and the asymptotic model adequately
proximates this as instantaneous. As an outcome, we h
found a criterion that shows that single or multiple wa
shedding is possible during each oscillation, depending
the resistivity of the injecting contact. While single sheddi
is the usual~stable! Gunn effect, multiple wave sheddin
may break the spatial coherence of the electric field wit
the sample. This new instability mechanism provides an
ce

rs
ro

s

B

B

B

tt.

05621
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nt
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planation for the complicated behavior observed in exp
ments performed in long semiconductor samples@23,9# and
in the numerical simulation of the drift-diffusion model. W
have confirmed these results by direct numerical simula
of the reduced model, in particular the new predictions
multiple shedding of solitary waves in the unstable case.
though simulations and analyses have been presented
for the p-Ge model, the general approach is quite gene
and applies to a wide class of PDE models that possess
following common properties:~i! an integral~over space!
constraint;~ii ! standard boundary conditions that permit mu
tiple stationary states, i.e., negative differential resistan
and~iii ! solitary waves~i.e., pulses! and fronts. It is interest-
ing to speculate that different models may lead to the sa
class of long-sample asymptotic limiting model, which com
pletely determines and explains the long-time dynamics~in-
cluding chaotic temporal behavior and loss of spatial coh
ence! of the respective full models.
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