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Chaotic motion of space charge wave fronts in semiconductors under time-independent
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A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied
numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistiv-
ity, and applied voltage—such that the sample is biased in a regime of negative differential resistance—we find
chaos in the propagation of nonlinear froftharge monopoles of alternating sigif electric field. The chaos
is always low dimensional, but has a complex spatial structure; this behavior can be interpreted using a
finite-dimensional asymptotic model in which the frgnharge monopo)epositions and the electrical current
are the only dynamical variables.
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[. INTRODUCTION traps that dominate the transport properties. Other experi-
The dynamics of propagating solitary wav@silses and  mental observations include intermittency near the onset of

monotone fronts in nonlinear partial differential equationsthe oscillatory instability8,9] and “spatiotemporal” chaos
(PDE’9 have been the focus of extensive research. Suchnder combined dc and ac voltage bi&8]. Another impor-
problems are of interest in a wide range of fields includingtant feature is the integral constraint that corresponds to volt-
biology (population dynamigs[1], chemical reactions and 2age bias applied across sample contacts in semiconductor
combustion[2,3], plasma physic§4], and semiconductor problems. Integral constraints also occur in other situations,
electronic transpoffi5]. A common problem is to understand fOr €xample expressing mass conservation in problems of
and predict the form and speed of the waves, as well as thehase separation in binary mixtures and in certain biological

possibility of multiple excitations in a sample of finite or prolalems[lf,ltﬁ,la. h h b full
infinite extent, and their interactions. We focus here on a any of these phenomena have been successiully ex-

model of electrical conduction in extrinsic semiconductors.pl"’”ne.d by means of a dl"lft-dlfoSIOn mpdel, Wh'ch mgludes
(involving time and only one spatial dimensjomvhich ex- impurity trapping of mobile holes and impact ionization of

- ; ) d ; ) neutral acceptors,13]. Although much work has been done
hibits negative differential resistan¢dDR) and moving do- on this model problentsee[14] and references therairim-

mains of high electric field. The model is specifically rel- . ant hasic questions concerning its asymptotic description
evant to experiments on cooled byttype Ge under voltage  5nq chaos under time-independent voltage bias are still open.
bias conditiond6,7], but much of the observed qualitative | this paper, we present numerical simulation results that
behavior applies to a broad class of semiconductor systemMgow chaos under dc voltage bias associated with multiple
with space charge instabilities. Phenomena observed for théhedding of wave fronts. Multiple shedding of wave fronts
p-Ge system include time-periodic oscillation of the currentoccurs for appropriate values of contact resistivity, and was
in a purely resistive external circuit under dc voltage biasrecently predicted on the basis of asymptotic calculations
due to the periodic creation of a solitary wave at the injecting 15]. Here we introduce a finite-dimensional model that pro-
contact, its motion inside the semiconductor, and its annihivides a simplified description of space charge wave dynam-
lation at the receiving contafT]. There is some similarity to ics in long samples. This model uses relevant information
the Gunn effect im-GaAs, except thati) the local current  from the asymptotics in Ref15], although we do not rigor-
density versus field characteristiceej (E) below] in p-Ge  ously derive it from such asymptotic calculations. Neverthe-
presents an increasing third branch after the NDR region, anigss, solutions of the simplified model are in good agreement
(i) the solitary waves ip-Ge move much more slowly than with the results of direct numerical simulations.
the carrier drift velocity(the case in the usual Gunn effect ~ The paper is organized as follows. In Sec. Il, we present a
due to the generation-recombination dynamics of ionizedlrift-diffusion model that accurately describes the propaga-
tion of space charge wave fronts in extrinsic semiconductors
under dc voltage bias such asGe. In Sec. Ill, we present
* Author to whom all correspondence should be addressed. Emailumerical simulation results of the drift-diffusion model that

address: inma@fa.upc.es indicate that wave fronts may propagate chaotically due to
"Email address: mjb@phy.duke.edu multiple shedding of wave fronts for appropriate bias in suf-
*Email address: bonilla@ing.uc3m.es ficiently long samples. Section IV presents the asymptotic
$Email address: teitso@phy.duke.edu model and numerical simulations thereof, which are then
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compared with results from the drift-diffusion model. Con- 1.5 i
clusions are finally presented in Sec. V. e __ - i
|
|
Il. THE REDUCED DRIFT-DIFFUSION MODEL :
: , e e |
In dimensionless form, the drift-diffusion model equa- |
tions for a sample of length can be written in a form NE l
(16,17 % 2T N I VA Y A — i,
|
FE | KAR( V' GE | GE S| Ll = :
axat v \kera Vax TNE TSy g |
(1) , |
______________ |\ e ___|;
Ej E(x,t)dx= ¢, i) 85 | L
0 "5 E,, 10E, 15
E(V/cm)
E(O)=pd(1). ()

FIG. 1. Stationary homogeneous current densjfE), and

The first equation describes the spatiotemporal evolutiofinear contact characteristic for a sample with the contact
of the electric fieldE(x,t) inside the sample, wherd(t) is  resistivity, p=780 Q cm, and compensation ratia=(acceptor
the total current density. The transport coefficiektts K, ~ concentratiojidonor concentratior=1.21.
andR are, respectively, the averagrift) velocity of micro-
scopic charge carrierholes in the case gi-Ge) and coef- determining when new fronts are injected into the sample.
ficients describing the creation of free carriers via impurity The critical current density. corresponds to the intersection
impact ionization and the destruction of free carriers by capof the contact characteristic with the homogeneous stationary
ture onto an available impurity trapping sifee., neutral current density. The role af;. has been elucidated using a
acceptoy. All are nonlinear functions of electric field, and rigorous asymptotic analysis of the system E@s—(3) in
their forms and plots have been discussed extensively in thiae limit asL —« [15], and is discussed further in Sec. IV.
literature[5,13,14. In this paper, we use the same forms as
in Ref.[14]. Equation(2) is a global constraint that expresses
the voltage bias condition, and E@) is a boundary condi-
tion that represents the Ohmic injecting contactat0 with To solve the system of Eqél)—(3) for E andJ, we dis-
contact resistivityp>0. We refer to Eqs(1)—(3) as there-  cretize the equations using finite-difference approximations
duceddrift-diffusion model because they are derived from ato the derivatives and employ an implicit method to generate
full drift-diffusion model by systematically dropping terms the solution. The initial condition for the electric field is
that correspond to short length and time-scale processes gpatially uniform with a value that is consistent with the
diffusion and displacement current, respectively. For a preglobal constraint, Eq(2). In Fig. 2, we show a space-time
cise derivation as well as a complete table of conversiomplot of the electric field and associated current density for
factors to dimensional units, sg&| and[16]. Some of them  $=6.25 V/cm, just above the threshold voltage value for
are time 2. 10" % ms, length 0.01 mm, electric field 10 which propagating domain behavior occurs. The gray scale
V/cm, density current 128.16 mA/cénand cross-sectional ranges from 5.3 V/cntblack) to 14.2 V/cm(white), and this
area 0.16 crh We have adopted the same symbol for bothscale is used in all similar plots that follow. The dimension-
dimensional and nondimensional variables. less sample length is 3800 corresponding to a p&e

The qualitative nature of much of the dynamical behaviorsample of length 3.87 cm, and the contact resistiyitys
found in the reduced drift-diffusion model—e.g., the insta-780 () cm corresponding to a value of 10.0 in dimensionless
bility of the stationary electric-field profile and propagating units. This case corresponds well to experimental data, but
high-field domaing17—-19—depends only on the presence published data irp-Ge were only presented for one sample
of a region of negative slope of the homogeneous stationargind relatively low bias values and contact resistivity. We
current density j(E)=V(E){aK(E)/[K(E)+R(E)]—1}, clearly see that a single domain moves across the sample at
[14,17,1§ over an interval of positive fields, and not on the constant speed, until it reaches the receiving contact. As it
exact form of the underlying coefficients. This is particularly disappears, a new wave is created at the injecting contact and
true when the sample is closely compensdted ratio of the  the process repeats periodically. The current versus time plot
acceptor concentration to the donor concentratigris only  indicates that the current is steady when the domain moves
slightly larger than L Then j(E) is N-shaped for large in the sample interior, while there is an increase when the
enough positive fields: there is an interval,E,) between domain reaches the receiving contact. It is important to note
the abscissa of the maximufj(Ey)=jm] and the mini- that the fronts of changing electric fieldr equivalently, the
mum [j(E)=]n>0] current density, for whicllj/dE<O regions of nonzero charge densigre sharp in space relative
andj(E)>0, as shown in Fig. 1. Also shown in Fig. 1 is the to other physical length scales for this problem, i.e., the ex-
injecting contact characteristic, which plays a crucial role intent of the flat top domains or the sample length. We have

IlI. NUMERICAL RESULTS
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FIG. 2. Space-time evolution of the electric fi¢tdx,t) and the FIG. 4. Space-time evolution of the electric field and the corre-

corresponding current densityd(t), with parameter values sponding current for a chaotic state wiih=10.0 V/cm and
$=6.25 Vicm andp=780 () cm. The gray scale ranges from 5.3 p=780 Q cm.
V/cm (black to 14.0 V/cm(white).

¢$=7.25 Vicm. Again the current is plotted on the far right

found that this separation of length scales increases witRf the figure. When the first domain reaches the receiving
sample length and holds for most biases of interest. It is onlgontact, the current increases. Instead of immediately starting
for voltages near the onset point that one tends to obser@€ nucleation of a new wave, the area lost by the dying
rounded solitary waves rather than well-separated pairs oFave is gained by the trailing wave; note that the width of
fronts; this is the dominant space charge wave structure oihe trailing wave increases after the leading wave starts to
served in shorter samples and has been extensively reportéigappear. The current increases, reaching a local maximum
[14,17,18. just _before the tra|I|n_g domain touch_es the leading domain,
As the bias increases, the propagating domain becomdBat is, the fronts collide. The current increases abruptly after
fatter and eventually a second small domain is nucleated arfff€ front collision and it rises to a global maximum, at which
propagates part of the way into the sample, but it dies beforB0int a new domain begins to nucleate at the injecting con-
reaching the receiving contact or merging with the largertct. As the domain forms, the current decreases and reaches
domain. At even larger bias values, the second domai Minimum, at which point a new domain detaches and be-
merges with the primary domain near the receiving contactgins to propagate. Then the current increases until a second

and this situation is shown in Fig. 3, which corresponds toSmaller domain is nucleated. Finally, the current settles to a
rather low constant level as the two domains move steadily

and in unison across the interior region of the sample. Cur-
rent behavior is apparently dominated by the major events
involving the fronts: collisions with the contacts or with each
other. This suggests the viability of a dynamical model that
focuses on discrete front motions and the curtnj.

At larger biases, the portion of the sample occupied by the
high-field valueE, is larger, reducing the separation between
domains, and giving more complicat&{x,t) structure and
J-t behavior. In Fig. 4, we show a space-time plot and cur-
rent for what appears to be a chaotic state for an applied bias
of $=10.0 V/cm. The spatiotemporal dynamics possess a
great deal of structure and complexity. The process of mul-
tiple domain shedding is similar to that for the previous case.
The large current peaks correspond to nucleation of leading
domains. The leading domains cross the sample without
catching up or forward-colliding with any other high-field

102 10 20 30 97 10.3 regions, and are indicated by dark regions that extend all the

x(mm) J(mA/cm?) way across the space-time diagram. Note also the larger spa-
tial extent of the leading domains than in Figs. 2 and 3. The

FIG. 3. Space-time evolution of the electric field and the corre-aperiodicity of the current is reflected in the irregular appear-
sponding current foip=7.25 Vicm. ance of the maximum current peaks or, equivalently, of the

20
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' ' ' ' ' likely because experimentally studied samples were too
Lev [ @ short, biases were not sgfficiently Iargg, or contact.resistivity
2 ’ — ) was too low. _However, in early experimental studies of the
g [ T — om, Gunn effect in GaAs, Gun23] observed that for long
5 163 % i §{" R samples, current oscillations were almost completely ran-
H : . AP} dom, resembling white noise. He also found that short
159 | 1 samples produce aperiodic oscillations when circuit imped-
ance is sufficiently large. It is plausible that Gunn may have
I observed a similar form of chaos to the one we have found
155 ——t————t——t——t numerically. In the next section, we develop an asymptotic
0.0008 i ® ] model in Which_ th_e chaotic (_jynamics is understooq to qrise
) I from the aperiodic nucleation of fronts at the injecting
0.0006 L i contact.
M 0.0004 |
) L IV. ASYMPTOTIC MODEL
0.0002 I The asymptotic model used in this paper consists of de-
0.0000 | . scribing the evolution of the current when all wave fronts are

detached from the injecting contact by an appropriate ordi-
nary differential equatiotODE) for J, tracking the position
of the wave fronts and proposing a simplified mechanism for

FIG. 5. dc bias bifurcation diagranta) local maxima in the ~Création and destruction of wave fronts. While our new
current andb) largest dimensionless Lyapunov exponent. model is compatible with the asymptotic calculations of Ref.

[15], we have not rigorously derived it from these calcula-

dark strips that extend across the entire sample. In betwedions. Instead, we have proposed a simplified dynamics to
them are a number of local maxima corresponding to théccount for our numerical observations motivated by
shedding of trailing domains. asymptotic results.

Figure a) shows a bifurcation diagram in which we plot ~ We begin by assuming th&t, < $<E, in Fig. 1 and that
all values of successive current maxima as a functiogpof En/ju<p<Emn/jm. Then a Gunn effect mediated by soli-
An important feature in this diagram is the apparent presenciry waves occur§24], as shown by the numerical simula-
of windows of chaotic behavior with a large number of tion in Fig. 2. For appropriate parameter values, there ap-
points being visited. For periodic states, we see a small nunpears a regular oscillation of the current caused by repeated
ber of points corresponding to perfectly repeating currentreation, motion, and destruction of high-field domains in the
maxima. Also, in the periodic regimes there are points wheréample. High-field domains are formed by two wave fronts
various branches merge or disappear and these correspondsgparating a region where the electric field is uniform and
the development or destruction of trailing domains. For thdarge from regions of uniform low field. Clearly, there are
parameter values selected here, we do not observe perigusitively and negatively charged wave fronts, having
doubling. We conjecture that the route to chaos here is ofE/dx>0 or JE/9x<0, respectively. Near the contacts,
boundary crisis type in which the attractor collides with athere are narrow boundary layer regions where the electric
periodic orbit on its basin boundaf0]. field changes abruptly. Creation of high-field domains occurs

In Fig. 5b), we show the largest Lyapunov exponant  at the injecting contact, via an instability of the boundary
versus¢ for the reduced drift-diffusion model. This unam- layer, which expels a high-field domain from the injecting
biguously confirms the presence of chaos in the “chaotic”contact to the bulk of the sample. Typically, the total current
windows. The next two exponents have been calculated anehanges most during wave-front creation and destruction
are never positive, so that the chaos we see is of a lowevents. In the limit as —, space and time scales atd
dimensional variety. To compute the exponents, we used aand t/L, respectively[15]. Then j(E)=J, except in wave
algorithm outlined in Ref[21] adapted for use with partial fronts and boundary layers at the contacts. If the field profile
differential equations and using adaptive control of the inteconsists of a single high-field domain detached from the con-
gration time steg22]. The values ofv, are zero in the pe- tacts, we havee=Ej3(J) inside the domain an&=E;(J)
riodic regimes as they should be for periodic behavior. Theoutside, wheree; <E,<Ej are the three zeros g{E)—J
smallness ok ; in the chaotic regime is easily understood by for j ,,<J<jy [15]. High- and low-field regions are joined
recalling the period of the system, about 1000 nondimenby wave fronts, which are the unique solution of Edy)
sional time units. This indicates that the chaos originates irffwith zero right-hand sidein the moving coordinatee=x
processes that occur on time scales on the order of the front X..(t), dX. /dt=c.(J) (the signs+ or — refer to the
transit time across the sample. To our knowledge, this is theharge inside the wave fronand appropriate boundary con-
first time that chaos due to multiple shedding of wave frontgditions. For example, at a positively charged wave front,
has been observed in a drift-diffusion model of this type. E—E;(J) as y— —« and E—E3(J) as y— +%. The nu-
This type of chaotic behavior has not been reported for exmerically determined values af. (J) are shown in Fig. 6.
periments orp-Ge with time-independent voltage bias, most  Boundary layers obegmost of the timg¢a quasistationary

55 65 75 85 95 105 115
¢ (viem)
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- - wherei goes from 1 toN. The quantitiesn, andn_ are,

+ respectively, the number of positive and negative monopoles
detachedfrom the contactgi.e., excluding possible mono-
poles atx=0 andx=L), while j; andj; denote the deriva-
tive of the staticj(E) characteristic with respect to electric
field, evaluated aE; and E3, respectively. Notice that the
system of Eqs(4)—(7) completely specifies the behavior of
current and field profile on the scalasL andt/L, except
that we do not have conditions for determining when new
fronts are emitted from the injecting contact.

We start with the simple case of Fig. 2: the motion of a
single high-field domain far from the contacfissatisfies Eq.
(6) with n,=n_=1, i.e., dJds=AJ)[c.(J)—c_(I)],
where s=t/L and A(J)>0. As shown in Fig. 6,

0 ! . c.(IN[c_(I)] is a decreasing(increasing function of
0.065 0.070 0.075 0.080 0.085 0.090 the current. Therefore] evolves exponentially fast toward
J the zero of the right-hand side of this equatids, J*. When

FIG. 6. This figure shows the velocities of the heteroclinic orbitsthe leading wave front ax=X_ arrives atx=L, it disap-
betweenE;(J) and E5(J), ¢, and E3(J) and E;(J), c_ vs ], pears almost instantaneously in the scal@nd we obtain
both of them in dimensionless units. dJ/ds=A(J)c,(J)>0, so that the current increases. The

injecting boundary layer near=0 ceases to be quasistation-
version of Eq.(1) with appropriate boundary conditions on a ary whenJ surpasses the valuk at which the lineJ=E/p
semi-infinite spatial Sl_Jpport. Th_e instant_an(_aous value of thgiersects the secon@lecreasing branch ofJ=j(E). The
currentJ(t/L) determines the field profile in the low and recise description of the instability, which results in expel-
high uniform-field regions and the velocity of the wave ling a narrow high-field domain from=0 to the interior of

fronts .

: e . . the sample, can be found ji5]. It is enough to say that a
. Next, assume that we hth_a an initial field profile consist certain semi-infinite problem has to be solved numerically
ing of N high-field domaingsolitary wavey each formed by . o . !

o) (i) and matched to the resulting situation with a narrow high-
two wave fronts located &t',’(t) <X’ (t). We shall number _ . L . .
the wave fronts so that®)(t)> x4+ 1(t), and if necessar field domain[consisting of a region dE = E5(J) bounded by
wav = = ’ : y positively and negatively charged wave frontsearx=0

. 1 N e
we shall consideX"=L andX{=0. Then the positions and a high-field region from a positively charged wave front

20

15

10 +

X0(t) are given by to x=L. In the new situation, we havedJ/ds
. =A(J[2c,.(J)—c_(J)], andJ tries to go toward the zero
x(p(t):f c.(J(s))ds, (4) J=J" of 2c,.(J)—c_(J). Depending on the resistivity
- th p, J. can be larger thad™* (and thenJ decreases toward

(0 . S . J™), or J.e(J*,J7) (and thenJ starts increasing, and a
wheret;,”.. denotes the time at which theh monopolewith  sacond high-field domain may be expelled fram 0). The
positive or negative chargevas born ax=0. , simplest case].>J*, was described asymptotically ja5].
Th_e eVO'U“‘?T‘ of the to_tal current density IS determined byProvidedq& is large enough) evolves exponentially fast to-
the bias condition2), which may be approximately evalu- wardsJ ™. When the old domain leaves the sample, only two

ated as wave fronts(bounding the new high-field domaimemain,
N () () andJ evolves exponentially fast towardf, so that a period
d=E1(I)+[E3()—E4 (]2, % (5  of the oscillation is completed; see Fig. 2. The second case,
i=1

J.e(J*,J7), is more complicated: numerical simulations

show that multiple high-field domains may coexist in the

(terms of order 1/ and smaller have been ignored here; nOtesampIe at the same time as in Fig. 3.

that ,thex(il)/,l‘ are of order unity. We can get an ODE fal To achieve a simplified description of the current oscilla-
by d|_fferent(|iz;1t|ng Eq.(5) \{wth respect to time ar_1d then sub- tion, valid for any positive value od., we proceed to ex-
stituting dX3’/dt=c(J) in the result. We obtain amine further the shedding process. The simplest rule to de-

termine when a new wave front is shed from the injecting

2
dJ _ 1 (Es—Ey 6) contact would be as follows: a positieegative front is

(nycy—n_c.)

dt Lg-E, Ez—¢ emitted at the instant thalt passes through, with positive
— t— (negative time derivative. However, this rule neglects the
Is J1 time needed for sufficient charge to be injected at the contact
0 0 to form a propagating front. We may estimate the effective
dizc (J) dizc (J) @) delay time by considering the time evolution of E@.)
dt s dt B evaluated at the injecting contact,
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K+R
\%

1 A
——PJ?

. K+R e

u+J IHI— - -iE)], (8)

u=

whereu(t) = JE(0,t)/dx and the argument &f, K, andRis
E(0t)=pJ(t), i.e., the value of electric field at the injecting
contact. In this equation, we can think d{t) as driving

charge injection processes determined front launching. Base
on extensive simulations of the reduced model, we haveg 25
found thatu(t) must attain a sufficiently large positive or
negative value for the front to detach and begin to propagate
This value is generally found to lie between 50% and 90% of

the steady state value thiat| would have in the case of no
propagating fronts, i.e., where near the injecting contact
rapidly rises to thee; value or rapidly falls to thés; value. é
The asymptotic model system is fully defined once the 5

threshold is set and consists in Eq4)—(8). Thus, in the 0 10 20 50 9.6mN 103

limit of an infinitely long sample, terms of order=1/L drop X(mm) A

and We arrive at.a Iow-d|menS|oan dynamlc_al system, Wh'.ch FIG. 7. Space-time evolution of the electric field and the corre-
consists essentially of propagating negative and pOSItIV@ponding current density determined from the asymptotic model for

charge points thati) move according to Eq(4), (i) are  ihe period-2 state withy=7.25 Vicm andJ,=9.983 mA/cri.
subject to the conservation law E(), and (iii) produce a

measurable current according to E6), and are created ac-
cording to Eq.(8). Note that in thee—0 limit, the current a solitary wave, becausec2—c_>0, and multiple wave
will exhibit slope discontinuities at the formation timta‘b%)r shedding is pos’sibl[a15]. This sitIJatio'n is shown in Fig. 7,
and destruction times’, but will be otherwise continuous  \yhich shows simulation results of our simplified asymptotic
and governed by E(6). We note that the rigorous founda- model for similar parameters to those of Fig. 3. The latter is
tions of this and similar asymptotic models have been exyepicted using data from direct numerical simulation of the
plored recently using singular perturbation methpt5,25.  reduced PDE model, Eqél)—(3). To obtain Fig. 7, the val-
_ In this paper, we estimate the order of magnitude of thges ofa were set to 13.75 for positive front emission and
time delay associated with wave-front formation by evaluat-7 g2 for negative front emission. We use these same values
ing Eq. (8) for J=~J.. This implies a relaxation time of in the data of Fig. 8, which has the same bias values as Fig.
Vv 4. The chaos appears to be closely tied to the asynchronous
~— (9) emission of fronts. This explains why the chaos observed for
% (e 1KV this partial differential equation system is low dimensional. It
dt (=1) is interesting to speculate how the maximal number of do-

>

J.e(J*,J7). Then the current will increase after creation of

i.e., the approximate time fou(t) to go from a value of 40 puum—
u(0)=—1 tou(7)=0. By dJ./dt, we refer to the value of __.....--{
dJ/dt whenJ crossesl.. Then, we adopt the criterion that a :
new front is born ak=0 at the timet+ar, wheret is the :
time at whichJ=J., andar is a delay time. Hera is a %
number of order 1 that is determined from simulation of the 39 i
reduced model for a particular bias voltage and then assume

to apply over the complete range. Wave-front destruction is /
assumed to occur instantaneously at tings when X £ :

=X or whenX{V=X"=L. We ignore the finite dura- :
tion of (fas) monopole destruction stages, which is equiva- 20
lent to the well-justified approximation of neglecting the dif-
fusive boundary layer at the receiving contpth]. It should

also be kept in mind that the index instantaneously decrease

by one when wave fronts downstream collide with one an- i
other. 10 0__//

Let us now use the above asymptotic model to interpret
the simulation results for Eq$l)—(3). The case of contact
resistivity such thatl;>J" has been explained already: we  F|G. 8. Space-time evolution of the electric field and the corre-
obtain the usual Gunn effect with at most one solitary waveéponding current density determined from the asymptotic model
detached from the contacts for any tifl5,25); see Fig. 2.  and showing a chaotic state for parametkrs 9.983 mA/cnf and
Let us assume now that the contact resistivity is such thap=10.0 Vicm.

9.7 105
x(mm) J(mA/em’)
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mains possible might scale with system size and contact rgglanation for the complicated behavior observed in experi-
sistivity. ments performed in long semiconductor sampk3,9 and
in the numerical simulation of the drift-diffusion model. We
V. CONCLUSION have confirmed these results by direct numerical simulation
- ) ) of the reduced model, in particular the new predictions of
We have utilized asymptotic analysis of a PDE modelmytiple shedding of solitary waves in the unstable case. Al-
(which describes the trap-dominated slow Gunn effect in 8nough simulations and analyses have been presented here
long samplgto explain the dynamics of space charge wavesgg, the p-Ge model, the general approach is quite general
and current vs time, including low-dimensional chaos, whichyng applies to a wide class of PDE models that possess the
is nonet_heless accompan_ied by spatially comp_le>§ structurﬁ,nowing common properties(i) an integral(over spack
suggesting a loss of spatial coherence. The building blockgonstraintyii) standard boundary conditions that permit mul-
of this analysis are the heteroclinic orbits used to construqqp|e stationary states, i.e., negative differential resistance;
the typical solitary waves mediating Gunn-like oscillations. 5 jii ) solitary wavedi.e., pulsesand fronts. It is interest-
During most of the oscillation, the motion of the heteroclinic ing to speculate that different models may lead to the same
orbits and the change of the electric field inside and outsid@|;5s of long-sample asymptotic limiting model, which com-
the solitary wavegenclosed by heteroclinic orbjtgollow pletely determines and explains the long-time dynarfiics
adiabatically the evolution of the total current density. Whe”cluding chaotic temporal behavior and loss of spatial coher-
a solitary wave reaches the receiving contact, the currergnce of the respective full models.
increases abruptly and the asymptotic model adequately ap-
proximates this as instantaneous. As an outcome, we have ACKNOWLEDGMENTS
found a criterion that shows that single or multiple wave
shedding is possible during each oscillation, depending on It is a pleasure to acknowledge beneficial conversations
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