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Abstract. We study the performance of Chebyshev spectral methods for time-dependent radia-
tive transfer equations. Starting with a method for one-dimensional problems in homogeneous media,
we show that the modifications needed to consider more general problems such as inhomogeneous
media, polarization, and higher dimensions are straightforward. In this method, we approximate
the spatial dependence of the intensity by an expansion of Chebyshev polynomials. This yields a
coupled system of integro-differential equations for the expansion coefficients that depend on angle
and time. Next, we approximate the integral operation on the angle variables using a Gaussian
quadrature rule resulting in a coupled system of differential equations with respect to time. Using a
second-order finite difference approximation, we discretize the time variable. We solve the resultant
system of equations with an efficient algorithm that makes Chebyshev spectral methods competitive
with other methods for radiative transfer equations.
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1. Introduction. Spectral methods have been widely applied to the Navier–
Stokes [1, 2], Schrödinger [3], acoustic [4], and Maxwell [5] equations, among others,
with great success. In this paper we are interested in using a Chebyshev spectral
method [6, 7] for the vector radiative transfer equation

1

v

∂

∂t
I(r, Ω̂, t) + Ω̂ · ∇rI(r, Ω̂, t) +Q[I](r, Ω̂, t) = F(r, Ω̂, t)(1.1)

governing wave propagation in a medium D ⊂ R
n (n = 1, 2, 3) that scatters, ab-

sorbs, depolarizes, and emits radiation. Applications for the vector radiative transfer
equation include polarized light propagation in clouds, fog, rain, and biological tis-
sue [8] as well as seismic wave propagation in heterogeneous media [10, 11]. In (1.1)
I = (I,Q, U, V ) is the 4× 1 Stokes vector needed to describe the polarized radiation
field completely. The total intensity is represented by I, the linear polarization state
by Q and U , and the circular polarization state by V . The Stokes vector I depends
on position r ∈ R

n, direction Ω̂ ∈ S
2 (S2 denotes the surface of the unit sphere), and

time t ∈ [0, T ]. In (1.1), v is the constant wave speed in the medium, and

Q[I](r, Ω̂, t) = σt(r)I(r, Ω̂, t)− σs(r)
∫

S2

S(Ω̂, Ω̂′) I(r, Ω̂′, t) dΩ̂′(1.2)

is the scattering operator. The total scattering cross-section σt(r) is the sum of the
scattering cross-section σs(r) and the absorption cross-section σa(r). All of these

cross-sections are real and nonnegative. The scattering matrix S(Ω̂, Ω̂′), which we
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assume is position independent, describes the directional distribution of energy density
that scatters in direction Ω̂ due to unit energy density incident in direction Ω̂′. In
addition, this matrix describes polarization changes manifested by scattering. Finally,
the source term F(r, Ω̂, t) accounts for any sources contained in the medium.

The radiative transfer equation has to be solved with appropriate initial and
boundary conditions. We assume that no radiation other than the source F enters
into the medium so that

I(r, Ω̂, t) = 0 on Γ,(1.3)

where Γ = {(r, Ω̂, t) ∈ ∂D × S
2 × [0, T ] such that ν(r) · Ω̂ < 0}, and ν(r) denotes

the unit outward normal vector to the boundary ∂D. In addition, we assume that no
energy is present in the medium at time t = 0,

I(r, Ω̂, 0) = 0 in D × S
2.(1.4)

The transport problem (1.1)–(1.4) is well-posed [12]. It models the incoherent or
scattered intensity for which its source manifests from coherent intensity incident at
the boundary [8, 9].

Equation (1.1) is usually solved using Monte Carlo methods (see [13] and ref-
erences therein for details). The main advantage of Monte Carlo methods is their
relative simplicity and their ability to handle complicated geometries. For large op-
tical depths, they require a large number of particles to obtain statistical accuracy
leading to long computational times. Other common numerical methods such as fi-
nite differences and finite elements have been applied to the scalar radiative transfer
equation with no polarization. However, for vector problems, Monte Carlo methods
are preferred.

Despite the high accuracy and competitive cost of spectral methods, there is not,
to our knowledge, any attempt to solve the time-dependent, vector radiative transfer
equation using spectral methods. However, there are two works that are related to this
problem. Ritchie, Dykema, and Braddy [14] solve the scalar, time-dependent problem
radiative transfer equation in which polarization is neglected with a Fourier spectral
method. Kim and Ishimaru [15] solve the one-dimensional, time-independent, vector
radiative transfer equation in homogeneous media with Chebyshev spectral methods.
In contrast to Fourier methods, which are restricted to problems with periodic bound-
ary conditions, Chebyshev spectral methods can consider a broad variety of boundary
conditions [7]. This is important for many applications such as optical imaging [16].

In this paper, we show that the underlying ideas of the Chebyshev spectral
method shown in [15] are robust to generalizations such as time-dependent, inhomo-
geneous, and higher-dimensional problems. Keeping the ease of implementation and
the low computational cost of a basic algorithm, we introduce modifications needed
for these general problems. In section 2, we start with the basic algorithm for the
one-dimensional, scalar problem in homogeneous media. We generalize this method
to inhomogeneous, vector, and higher-dimensional problems in section 3. We present
results from numerical experiments in section 4. A summary of our work and some
concluding remarks appear in section 5.

2. Time-dependent, scalar problems in one-dimensional homogeneous
media. In this section, let us consider the plane-parallel problem shown in Figure 2.1.
The medium, which infinitely extends in the x-y directions, is bounded by two planes
located at z = 0 and z = d, and its spatial properties, σt and σs, are constant.



CHEBYSHEV SPECTRAL METHODS FOR RADIATIVE TRANSFER 2077

dscattering medium

x
y

z

φ

θ Ω̂

incident wave

Fig. 2.1. The plane-parallel problem.

In addition, the source F does not vary with respect to x and y. We also neglect
polarization so that Q = U = V = 0 in (1.1)–(1.4), and the 4 × 4 matrix S(Ω̂ · Ω̂′)
is replaced by the scalar function P (Ω̂, Ω̂′) = S11(Ω̂, Ω̂

′) (the (1, 1) entry of S). The
scalar function P is called the phase function. Under these assumptions, the vector
radiative transport equation (1.1) reduces to

1

v

∂

∂t
I(z, µ, φ, t) + µ

∂

∂z
I(z, µ, φ, t) +Q[I](z, µ, φ, t) = F (z, µ, φ, t),(2.1)

with

Q[I] = σtI(z, µ, φ, t)− σs
∫ 2π

0

∫ 1

−1

P (µ, µ′, φ− φ′) I(z, µ′, φ′, t) dµ′dφ′.(2.2)

Here, µ = cos θ, where θ is the propagation direction angle defined with respect to the
positive z-direction, and φ is the azimuthal angle (see Figure 2.1). The special form
of the azimuthal dependence, φ− φ′, in the phase function P is a direct consequence
of the rotational invariance of the scattering matrix.

By representing the azimuthal dependence of the intensity as a Fourier series,

I(z, µ, φ, t) =

∞∑
n=−∞

In(z, µ, t) e
inφ,(2.3)

where the coefficients of this expansion are defined as

In(z, µ, t) =
1

2π

∫ 2π

0

I(z, µ, φ, t) e−inφdφ,(2.4)
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one finds that each Fourier mode decouples from the others in (2.1). Dropping the
index n for simplicity, we find that the resultant problem for each harmonic is

1

v

∂

∂t
I(z, µ, t) + µ

∂

∂z
I(z, µ, t) +Q[I](z, µ, t) = F (z, µ, t) in X,(2.5a)

I(z = 0, µ, t) = 0 on (0, 1]× [0, T ],(2.5b)

I(z = d, µ, t) = 0 on [−1, 0)× [0, T ],(2.5c)

I(z, µ, t = 0) = 0 in [0, d]× [−1, 1],(2.5d)

where X = [0, d]× [−1, 1]× [0, T ] and

Q[I] = σtI(z, µ, t)− σs
∫ 1

−1

p(µ, µ′) I(z, µ′, t) dµ′.(2.6)

In (2.5a) F is a coefficient of an azimuthal Fourier series expansion of the source.
Here, we distinguish the Fourier coefficient of the phase function P defined in (1.2)
by p in (2.6). It is normalized according to∫ 1

−1

p(µ, µ′)dµ′ = 1.

Henceforth, we concentrate on solving (2.5) for only one Fourier mode since each
mode is decoupled from the others.

2.1. Spatial discretization. Let us change variables in (2.5) from z ∈ [0, d] to
s ∈ [−1, 1] by the linear transformation s = 2z/d− 1. Under this change of variables,
(2.5a) becomes

1

v

∂

∂t
I(s, µ, t) +

2

d
µ
∂

∂s
I(s, µ, t) +Q[I](s, µ, t) = F (s, µ, t).(2.7)

Now we approximate the spatial dependence of the intensity by the Chebyshev spectral
expansion

I(s, µ, t) ∼=
N∑

k=0

ak(µ, t)Tk(s).(2.8)

The Chebyshev polynomials Tk(s) are orthogonal with respect to the weighted inner
product

(Tj , Tk) =

∫ 1

−1

Tj(s)Tk(s)
ds√
1− s2 =

{
πδj,k for k = 0,
π
2 δj,k for k ≥ 1

(2.9)

and are normalized so that Tk(s = ±1) = (±1)k. Here, δj,k is the Kronecker delta.
Since the expansion functions Tk do not satisfy the boundary conditions (2.5b) and
(2.5c), the extra set of equations

I(s = −1, µ, t) =
N∑

k=0

(−1)kak(µ, t) = 0 on (0, 1]× [0, T ],(2.10a)

I(s = +1, µ, t) =
N∑

k=0

ak(µ, t) = 0 on [−1, 0)× [0, T ](2.10b)
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must be included. Each boundary condition imposes the value of the intensity only
over half of the angular data (µ < 0 or µ > 0). Therefore, the composition of (2.10a)
and (2.10b) defines a single equation for the expansion coefficients on [−1, 1]× [0, T ].
Furthermore, we note that considering different boundary conditions does not alter
any other aspect of this method.

The Chebyshev spectral approximation to (2.7) is given by (2.8) with (2.10) and

1

v

∂ak
∂t

+
2

d
µ

(
Tk,

∂I

∂s

)
+ (Tk,Q[I]) = (Tk, F ), k = 0, . . . , N.(2.11)

Next, we approximate the spatial derivative by another spectral expansion,

∂I(s, µ, t)

∂s
∼=

N∑
k=0

Ak(µ, t)Tk(s),(2.12)

where Ak is related to ak through

ak =
1

2k
[ck−1Ak−1 −Ak+1] for k = 1, 2, . . . , N.(2.13)

In (2.13), we assume that AN+1 � AN so that aN = 1
2N cN−1AN−1. The normaliza-

tion quantity ck is defined as

ck =

{
2 for k = 0,

1 for k = 1, . . . , N − 1.
(2.14)

Substituting (2.8) and (2.12) into (2.11) we obtain the system of integro-differential
equations

∂ak(µ, t)

∂t
+

2v

d
µAk(µ, t) + vQ[ak](µ, t) = vFk(µ, t), k = 0, . . . , N,(2.15)

for the expansion coefficients ak and Ak. Note that there are N+1 equations in (2.15),
an extra equation due to the boundary condition (2.10), plus the N relations (2.13)
for the 2N+2 unknowns in {ak, Ak}. Later in this discussion, we use (2.13) to reduce
the number of unknowns to N +1. In (2.15), Fk are the coefficients of the Chebyshev
spectral approximation of the source function. Finally, we note that the resolution
requirements needed to compute an accurate numerical solution of the system do not
directly depend on the thickness of the medium z = d. Rather, spectrally resolving
the source function over the spatial domain dictates the resolution requirements. In
other words, sources that rapidly vary in the spatial domain require more Chebyshev
modes than smoothly varying ones.

2.1.1. Angular discretization. In using a Chebyshev spectral approximation
for the spatial variable, we obtain the integro-differential system (2.15) for expan-
sion coefficients that depend on angle and time. We now focus attention on accu-
rately treating the scattering operation. While there are several different ways of
treating the integral operation in the radiative transfer equation, such as spherical
harmonics and finite element expansions, a simple and effective method is the dis-
crete ordinate method. By using this method, one can accurately approximate the
scattering operator and easily adjust the angular resolution needed for different lev-
els of anisotropy. Methods using spherical harmonics expansions require moderately
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low levels of anisotropy for efficient use. Otherwise, the number of spherical har-
monics needed becomes restrictively large for practical computations. Finite element
methods are useful for highly anisotropic scattering [20] but are more complicated to
implement than discrete ordinate methods. Choosing any of these methods for the
angular discretization would work without interfering with the rest of the algorithm.

Now let us replace the continuous angular variable µ with a set of discrete points
{µi}. Then

∂ak(µi, t)

∂t
+

2v

d
µiAk(µi, t) + vQ[ak](µi, t) = vFk(µi, t) for i = 1, . . . , q,(2.16)

where k = 0, . . . , N . We use these discrete points µi to approximate the scattering
operator as

Q[ak](µi, t) = σtak(µi, t)− σs
q∑

j=1

wjp(µi, µj) ak(µj , t).(2.17)

The quality of this approximation will of course depend on the choice of the quadrature
rule. We refer to [17] and references therein for a more detailed discussion on this
subject. We chose a quadrature rule where µj are the zeros of the Legendre polynomial
of order q and wj are the corresponding Gaussian weights.

Using matrix notation, (2.16) can be written as

∂ak(t)

∂t
+

2v

d
LAk(t) + vQ[ak](t) = vFk(t) for k = 0, . . . , N,(2.18)

where we have introduced the q × 1 vectors

ak(t) = (ak(µ1, t), ak(µ2, t), . . . , ak(µq, t)),(2.19a)

Ak(t) = (Ak(µ1, t), Ak(µ2, t), . . . , Ak(µq, t)),(2.19b)

Fk(t) = (Fk(µ1, t), Fk(µ2, t), . . . , Fk(µq, t)),(2.19c)

and the q × q matrix L = diag(µ1, µ2, . . . , µq).

2.2. Temporal discretization. To integrate (2.18) in time, we use a trapezoid
rule and obtain

[
I +

v∆t

2
Q

]
an+1
k +

v∆t

d
LAn+1

k =

[
I − v∆t

2
Q

]
an
k − v∆t

d
LAn

k +
v∆t

2

[
Fn+1

k + Fn
k

]
,

(2.20)

where I is the identity matrix and an
k and An

k are the coefficients for the intensity
and its spatial derivative evaluated at time tn = n∆t, respectively. The numerical
scheme (2.20) corresponds to the Crank–Nicholson method which is fully implicit,
second-order accurate, and unconditionally stable.

Now we discuss an efficient algorithm to solve (2.20). At each time step we must
solve

Kak +MAk = fk,(2.21)

where K = I + v∆tQ/2, M = v∆tL/d, and fk is a known quantity corresponding to
the right-hand side of (2.20).
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From (2.13) we see that transforming from ak to Ak is a simple operation possess-
ing an inherent sparsity. To take advantage of this sparsity, we construct a system of
equations to solve for the coefficients of the intensity’s spatial derivative rather than
coefficients of the intensity (see [18] and references therein for details regarding this
technique). After transforming terms involving ak to operations on Ak, we obtain a
block tridiagonal system

MA0 +Ka0 = f0 for k = 0,(2.22a)

MA1 +KA0 − 1

2
KA2 = f1 for k = 1,(2.22b)

MAk +
1

2k
K [Ak−1 − Ak+1] = fk for k = 2, . . . , N − 1,(2.22c)

MAN +
1

2N
KAN−1 = fN for k = N .(2.22d)

For the boundary conditions (2.5b) and (2.5c), we evaluate each expansion coefficient
ak at the quadrature points µi and operate on that result by (2.13) to obtain

a+
0 − A+

0 +
1

4
A+

1 −
N−1∑
k=2

(−1)k

2

[
1

k + 1
− 1

k − 1

]
A+

k +
1

2(N − 1)
A+

N = 0,(2.23a)

a−
0 + A−

0 +
1

4
A−

1 +

N−1∑
k=2

1

2

[
1

k + 1
− 1

k − 1

]
A−

k − 1

2(N − 1)
A−

N = 0.(2.23b)

Here, we have defined A∓
k to be subvectors of Ak,

Ak =

[
A−

k

A+
k

]
,(2.24)

where A−
k corresponds to the part of Ak in which µi < 0 and A+

k corresponds to the
part of Ak in which µi > 0. The same notation applies for a∓

0 .
Equations (2.22) and (2.23) define a system of equations for A0,A1, . . . ,AN and

a0. After computing a solution for these unknowns, we can compute the desired
expansion coefficients of the intensity ak by applying (2.13) again. One can solve
this system using Gaussian elimination, but the cost is O

(
q3(N + 1)3

)
. Instead, we

use the generalized deflated block elimination method [19] that takes advantage of
the inherent sparsity of this system to reduce the number of operations significantly.
The number of operations needed to solve (2.22) and (2.23) using this method is
O(q3(N − 1)). We discuss the details of this solution method in Appendix A.

3. Generalizations. We now study the modifications needed to deal with more
general problems. We carry out these modifications in a way that preserves the order
of accuracy, computational cost, and ease of implementation.

3.1. Layered media. In many applications the properties of the medium in the
vertical direction are not homogeneous. In that case, a multilayered model where
the scattering and total cross-sections are piecewise constant functions in space might
be applied. Using the Chebyshev spectral method, we find that solving problems
in layered media is essentially the same as solving homogeneous problems in each
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layer. Dealing with interfaces between layers requires only adding extra conditions
that reside with the boundary conditions in the resultant system of equations.

For simplicity, let us consider a medium with only two layers. In that case

σs,t(z) =

{
σ

(1)
s,t for z ∈ [0, d1),

σ
(2)
s,t for z ∈ [d1, d2].

(3.1)

In addition to the boundary conditions (2.5b) and (2.5c), we impose that the intensity
at the interface z = d1 between the layers is continuous so that

I(z, µ, t) =

{
I(1)(z, µ, t) for z ∈ [0, d1],

I(2)(z, µ, t) for z ∈ [d1, d2].
(3.2)

Now let us introduce two spatial variables

s1 = 2
z

d1
− 1 for z ∈ [0, d1],(3.3)

s2 = 2
z − d1
d2 − d1 − 1 for z ∈ [d1, d2](3.4)

so that the radiative transfer equation for each harmonic is[
1

v

∂

∂t
+

2

d1
µ
∂

∂s1
+Q(1)

]
I(1)(s1, µ, t) = F

(1)(s1, µ, t) for s1 ∈ [−1, 1],(3.5a) [
1

v

∂

∂t
+

2

d2 − d1µ
∂

∂s2
+Q(2)

]
I(2)(s2, µ, t) = F

(2)(s2, µ, t) for s2 ∈ [−1, 1].(3.5b)

Here, we define the scattering operator as

Q(j)[I] = σ
(j)
t I(sj , µ, t)− σ(j)

s

∫ 1

−1

p(µ, µ′)I(sj , µ′, t) dµ′, j = 1, 2,(3.6)

and the source function as

F (z, µ, t) =

{
F (1)(z, µ, t) for z ∈ [0, d1],

F (2)(z, µ, t) for z ∈ [d1, d2].
(3.7)

The boundary conditions for this problem are

I(1)(s1 = −1, µ, t) = 0 on (0, 1]× [0, T ],(3.8a)

I(2)(s2 = +1, µ, t) = 0 on [−1, 0)× [0, T ],(3.8b)

and the continuity condition at the interface implies that

I(1)(s1 = +1, µ, t) = I(2)(s2 = −1, µ, t) on [−1, 1]× [0, T ].(3.9)

Now we consider Chebyshev spectral approximations for I(1) and I(2):

I(j)(sj , µ, t) ∼=
N∑

k=0

a
(j)
k (µ, t)Tk(sj), j = 1, 2.(3.10)
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In performing the same analysis used for the homogeneous case, we obtain

∂

∂t
a
(1)
k (µ, t) +

2v

d1
µA

(1)
k (µ, t) + vQ(1)[a

(1)
k ](µ, t) = vF

(1)
k (µ, t),(3.11a)

∂

∂t
a
(2)
k (µ, t) +

2v

d2 − d1µA
(2)
k (µ, t) + vQ(2)[a

(2)
k ](µ, t) = vF

(2)
k (µ, t)(3.11b)

for k = 0 u 4 Γ + 4 T ffi 2 z 6 ] ( 7 h - + W c b b b c 4 Γ 4 z 4 T f h z + fi z F 4 - 8 + F 8 W F
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We first express the variable cross-sections as

σs,t = σ
(0)
s,t + σ̃s,t(s),(3.14)

where σ
(0)
s and σ

(0)
t are constants. We choose to represent the variable cross-sections

in this way so we can treat a portion of the cross-section implicitly. This is important
for the time stability limit of the scheme. By substituting (3.14) into the radiative
transfer equation, we obtain

1

v

∂

∂t
I(s, µ, t) +

2

d
µ
∂

∂s
I(s, µ, t) +Q[I](s, µ, t) = F (s, µ, t)− Q̃[I](s, µ, t),(3.15)

with

Q̃[I](s, µ, t) = σ̃t(s)I(s, µ, t)− σ̃s(s)
∫ 1

−1

p(µ, µ′) I(s, µ′, t) dµ′.(3.16)

The only difference between (2.7) for the homogeneous case and (3.15) is the inhomo-
geneous term Q̃[I].

In order to maintain high accuracy and low computational cost, we treat Q̃[I]
explicitly in time with a second-order Adams–Bashforth scheme so that

(3.17)

[
I +

v∆t

2
Q

]
an+1
k +

v∆t

d
LAn+1

k =

[
I − v∆t

2
Q

]
an
k − v∆t

d
LAn

k

+
v∆t

2

[
Fn+1

k + Fn
k

]− v∆t
2

[
3Q̃[a]nk − Q̃[a]n−1

k

]
.

The convolution terms

[σ̃t,s ( a]
n
k (µi) =

∫ 1

−1

σ̃t,s(s)I(s, µi, tn)Tk(s)
ds√
1− s2(3.18)

contained within Q̃[a]nk are evaluated explicitly in time, so there is no coupling between
different k modes at time level n+ 1. These convolutions can be computed either in
the spatial domain (pseudospectrally) or in the Chebyshev transform domain. Notice
that the only difference between the homogeneous and inhomogeneous problem lies
in constructing the right-hand side of (3.17).

Dealing with the inhomogeneities explicitly in time compromises the stability of
the numerical scheme. Specifically, the explicit terms in (3.17) require v∆tmax(σ̃t) <
1 for stability. This range is not restrictive in most applications since only a portion
of the variable cross-sections is treated explicitly. However, if this stability condition
does become problematic, an implicit fractional step method similar to that presented
in [14] may be applied. Another possibility is to decompose the medium into strips
over which the variable cross-sections are assumed to be piecewise constant with
some variable perturbation. Then, one can construct and solve the corresponding
layered background medium problem with the same method for inhomogeneous media
presented above in each layer. This approach would minimize the size of the variable
perturbation within each strip, thereby reducing the time step restriction.

3.3. Vector radiative transfer. Modifying the methods presented in section 2
to include polarization is straightforward. In fact, the only modification required lies
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in constructing the system of equations for
I(s, µ, t)
Q(s, µ, t)
U(s, µ, t)
V (s, µ, t)

 ∼=
N∑

k=0


a
(I)
k (µ, t)

a
(Q)
k (µ, t)

a
(U)
k (µ, t)

a
(V )
k (µ, t)

Tk(s),(3.19)

where a
(I)
k , a

(Q)
k , a

(U)
k , and a

(V )
k are the spatial projections of the Stokes parameters

onto the Chebyshev polynomial of order k. Proceeding in a similar manner as in
section 2, we obtain

∂

∂t


a

(I)
k

a
(Q)
k

a
(U)
k

a
(V )
k

+
2v
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with

Q[I] = σtI(s, x, µ, φ, t)− σs
∫ 2π

0

∫ 1

−1

P (µ, µ′, φ− φ′) I(s, x, µ′, φ′, t) dµ′dφ′.(3.26)

Boundary and initial conditions are given by (2.5b)–(2.5d) for all points x. Due to
the cosφ in front of the partial derivative with respect to x, the Fourier modes of the
azimuthal variable do not decouple as in the one-dimensional problem. Therefore,
the discrete ordinate method must be extended to include a quadrature rule for the
azimuthal variable as well.

Since the medium is infinite in the horizontal direction, it is natural to deal with
the x dependence of the intensity I by a Fourier series. Consequently, we approximate
I by the expansion

I(s, x, Ω̂, t) ∼=
Nv∑
k=0

Nh/2∑
l=−Nh/2

akl(Ω̂, t)Tk(s)e
ilx.(3.27)

Proceeding in an analogous way to section 2 we obtain a semidiscrete equation for
each mode l that is decoupled from the others. Each decoupled semidiscrete equation
has the same form as (2.15), where the operator Q has to be replaced by

(3.28) Ql[akl](µ, φ, t) = σt akl(µ, φ, t) + il
√
1− µ2 cosφakl(µ, φ, t)

− σs
∫ 2π

0

∫ +1

−1

P (µ, µ′, φ− φ′) akl(µ′, φ′, t) dµ′dφ′.

This problem can be solved by the same procedure as the one-dimensional case for
each mode l independently. It is also clear that the case where the coefficients σt and
σs depend on the position can be treated with a semi-implicit method as in section
3.2.

As a second example, let us consider that the horizontal direction is bounded by
two planes at x = 0 and x = dx so that we have the two extra boundary conditions

I(z, x = 0, Ω̂, t) = 0 on Γx,(3.29)

I(z, x = dx, Ω̂, t) = 0 on Γx,(3.30)

where Γx denotes the set of points [0, dz]×S
2× [0, T ] such that ν(x) · Ω̂ < 0. After the

linear transformation r = 2x/dx−1, we approximate the intensity I and its derivatives
by the expansions

I(s, r, Ω̂, t) ∼=
Nv∑
k=0

Nh∑
l=0

akl(Ω̂, t)Tk(s)Tl(r),

∂

∂s
I(s, r, Ω̂, t) ∼=

Nv∑
k=0

Nh∑
l=0

Akl(Ω̂, t)Tk(s)Tl(r),

∂

∂r
I(s, r, Ω̂, t) ∼=

Nv∑
k=0

Nh∑
l=0

Bkl(Ω̂, t)Tk(s)Tl(r).

(3.31)

Again, proceeding in a similar fashion we obtain the semidiscrete set of equations

∂akl
∂t

+
2v

dz
µAkl +

2v

dx

√
1− µ2 cosφBkl + vQ[akl] = vFkl(3.32)
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for k = 0, 1, . . . , Nv and l = 0, 1, . . . , Nh. After discretization in the angular variables
µ and φ and the time variable t, and using relations

akl =
1

2k
[ck−1Ak−1,l −Ak+1,l] ,(3.33a)

akl =
1

2l
[cl−1Bk,l−1 −Bk,l+1] ,(3.33b)

one could resolve the resulting system for the 2(N +1)+(N +1)2 variables a0l, BkNh
,

and Akl as in section 2. However, this procedure is cumbersome due to the recursion
relation between Bkl and Akl. Therefore, we solve the fully discretized equations
arising from (3.32) with an alternating direction implicit or approximate factorization
method. The two-step method (see Appendix B) is[

I +
v∆t

4
Q

]
a∗
kl +

v∆t

dz
LzA

∗
kl =

[
I − v∆t

4
Q

]
an
kl −

v∆t

dz
LzA

n
kl +

v∆t

2

[
Fn+1

kl + Fn
kl

]
,

[
I +

v∆t

4
Q

]
an+1
kl +

v∆t

dx
LxB

n+1
kl =

[
I − v∆t

4
Q

]
a∗
kl −

v∆t

dx
LxB

∗
kl(3.34)

for each k and each l. The matrices Q, Lz, and Lx in (3.34) are defined in Appendix B.
Algorithm (3.34) again has the desired property of preserving the structure of the one-
dimensional problem. For each fixed l, one needs only to solve two block tridiagonal
systems. This method is second-order accurate and unconditionally stable.

4. Numerical examples. Here, we present computations for different radiative
transfer problems. We also examine the convergence of these methods in space and
time. The convergence of the discrete ordinate method is well established [21]. Kim
and Ishimaru [15] demonstrated that the Chebyshev spectral method, in conjunction
with the discrete ordinate method, is able to resolve highly anisotropic scattering for
these problems.

As an example, we consider a normally incident pulsed plane wave entering the
medium at z = 0 and solve for the incoherent or scattered intensity. Figures 4.1(a)
and (b) show the numerical solutions to scalar and vector problems, respectively. In

these examples and all that follow, we normalize spatial units by - = 1/σ
(0)
t and time

units by -/v.
For the scalar problem (Figure 4.1(a)), we computed the magnitude of the backscat-

tered flux

F(t) = 2π

∫ 0

−1

I(z = 0, µ, t)|µ|dµ(4.1)

for three different media of thickness d = 20. The scattering and absorption cross-
sections

σs,a = σ(0)
s,a + σ̃s,a(z)

all have σ
(0)
s = 0.98 and σ

(0)
a = 0.02, and

σ̃s,a(z) = As,a exp

[(
z − zs,a
ws,a

)2
]
.
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Table 4.1
Parameter values for the three different media depicted in Figure 4.1(a).

Medium As zs ws Aa za wa

homogeneous 0 — — 0 — —
absorbing 0 — — 0.5 15 2
scattering 1 5 1 0 — —

medium, thereby giving rise to the scattered component of the intensity [8]. The time
at which the pulse center reaches the boundary at z = 0 is to and the pulse width is
T . For this computation, to = 1, T = 0.5, and g = 0.85.

We observe in Figure 4.1(a) that the presence of the scattering inhomogeneity
centered at zs = 5 gives rise to an increase of the backscattered response (dashed line).
By causality, the first indication of this presence takes place at t ≈ 11. This is the
time that it takes for light to propagate from the boundary to the inhomogeneity and
back to the boundary. Similarly, we observe a decrease in the backscattered response
at t ≈ 31 due to the absorption inhomogeneity centered at za = 15 corresponding to
the time needed to reach the inhomogeneity and return to the surface.

In Figure 4.1(b), we show the copolarized (solid line) and cross-polarized (dot-
dashed line) components of the transmitted average intensity

U(t) = 1

2

∫ 1

0

I(z = d, µ, t)dµ.

The incident pulse is left-handed circularly polarized so that I = V = 1 and Q =
U = 0 and normally impinges a medium of thickness d = 1. For these computations,
to = 1 and T = 0.5. We define the copolarized intensity to be the component that is
left-handed circularly polarized

ILHC =
1

2
(I + V )

and the cross-polarized intensity to be the component that is right-handed circularly
polarized

IRHC =
1

2
(I − V ).

Because early transmitted responses consist of light that has undergone very little
scattering as it propagated through the medium, it is entirely copolarized. As time
increases, scattering gives rise to depolarization so that the cross-polarized component
increases. For very large times, we observe in Figure 4.1(b) that both components are
equal.

4.1. Temporal convergence. To verify that the temporal discretization is
second-order accurate, we examine time-resolved, backscattered flux responses for
the scalar problems explained in sections 2, 3.1, and 3.2. As a test problem, we
considered a pulse with to = 1 and T = 0.5 in a medium with thickness d = 1 and
anisotropy g = 0.5 up to time t = 10. Since there is no known analytical solution
to this problem, we compared flux responses using different time steps to a reference
solution computed with ∆t = 0.001. Specifically, we computed the infinity norm of
the difference of a solution with lower resolution and the reference solution normalized
by the infinity norm of the reference solution. For all of these computations, we used
20 quadrature points.
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Fig. 4.2. Computed relative errors of time-resolved, backscattered flux responses as a function
of the time step ∆t. These computations used 20 quadrature points. The medium is d = 1 thick
with anisotropy g = 0.5.

Table 4.2
Observed rates of convergence for the time discretization using the infinity norm of the difference

between the computed solution and a reference solution with ∆t = 0.001.

Medium Convergence rate

homogeneous 2.0174
layered 2.0055

inhomogeneous 1.9874

For the homogeneous problem, we considered a medium with σs = 0.98 and
σa = 0.02, and used 65 Chebyshev modes. For the layered problem, we considered
three layers with interfaces at z = 0.4 and z = 0.7 with

σs(z) =


0.98 for z ∈ [0, 0.4],

1.96 for z ∈ (0.4, 0.7],

0.90 for z ∈ (0.7, 1],

σa(z) =


0.02 for z ∈ [0, 0.4],

0.04 for z ∈ (0.4, 0.7],

0.10 for z ∈ (0.7, 1],

and used 17 Chebyshev modes in each layer. For the inhomogeneous problem, we
considered

σ̃s(z) = 0.98 exp

[
−
(
z − 0.4

0.3

)2
]
, σ̃a(z) = 0.02 exp

[
−
(
z − 0.4

0.3

)2
]
,

and used 65 Chebyshev modes.
Plots of the backscattered flux errors appear in Figure 4.2. We tabulated the

observed rates of convergence in Table 4.2. As expected, the time discretization
exhibits a second-order convergence rate.

4.2. Spatial convergence. Since we use a Chebyshev spectral method to ap-
proximate the spatial dependence of the intensity, we expect a superalgebraic conver-
gence as the number of Chebyshev modes increases. To isolate the spatial properties
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Fig. 4.3. Relative errors of average intensities as a function of the number of Chebyshev modes
for the continuous wave problem. These computations used 60 quadrature points for an isotropic
medium (g = 0).

of this method, we perform computations for a continuous wave source in a homo-
geneous medium with σs = 0.98 and σa = 0.02. Furthermore, we consider isotropic
scattering (g = 0) with 100 quadrature points.

To model an incident continuous wave, we consider the limit in which the temporal
pulse width tends toward infinity (T → ∞). In that case, the source function is

F (z, µ) = p(µ, 1) e−σtz,(4.6)

and, consequently, the specific intensity is independent of time.
To examine the convergence properties of the spatial approximation for this prob-

lem, we examine the average intensity

U(z) = 1

2

∫ 1

−1

I(z, µ)dµ(4.7)

computed using the Gaussian quadrature rule used with the scattering operator. As
with the temporal convergence study, we do not have a known analytical solution.
Instead, we compare results to a highly resolved reference solution with N = 513
Chebyshev modes.

A plot of this spatial convergence study appears in Figure 4.3. We compute
the 2-norm of the difference between a particular solution and the reference solution
normalized by the 2-norm of the reference solution. In Figure 4.3 we observe the
expected superalgebraic convergence of this method. In fact, the relative errors for
Chebyshev modes larger than 65 are below the allowed accuracy of double floating-
point arithmetic.

5. Summary and concluding remarks. We have presented a complete dis-
cussion of Chebyshev spectral methods for solving radiative transfer problems. In
particular, we have examined problems in which we apply Chebyshev spectral meth-
ods to the spatial variable, Gaussian quadrature methods to the angular variable, and
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finite differences in the time variable. The resultant linear system of equations at each
time step is sparse. This method easily handles homogeneous as well as continuously
inhomogeneous and layered media. We have shown that these methods maintain the
same structure and ease of implementation as the homogeneous problem. In addition,
we show that it modifies easily to solve vector problems and has the potential to solve
higher-dimensional problems efficiently.

For all of the cases presented here, we use the generalized deflated block elimi-
nation method to solve the bordered, block tridiagonal system of equations at each
time step. This method is adequate in computing solutions for the problems we have
examined here. However, it is noteworthy to mention that there is an obvious rich-
ness in the structure of this linear system beyond its sparsity (see Appendix A). It is
quite possible that more can be done to take advantage of this structure to construct
even more efficient methods for computing solutions. As we begin to implement this
method for larger problems, examining this system in greater detail will become more
important and hence will be the subject of future studies. Furthermore, we intend to
use this method to examine polarization techniques for optical imaging problems in
future work.

Appendix A. The generalized deflated block elimination method. To
solve the system of equations (2.22) and (2.23) efficiently, let us construct two vectors
that contain the unknown quantities,

X =
[
A0, A1, · · · , AN

]T
,(A.1)

Y =
[
a0

]
,(A.2)

where the superscript T denotes the transpose. Then, we can compactly write (2.22)
and (2.23) as [

A B
CT D

] [
X
Y

]
=

[
F
G

]
.(A.3)

Here, A is the (N +1)× (N +1) block tridiagonal matrix composed by q× q matrices
M and K

A =



M 0
K M − 1

2K
1
4K M − 1

4K
.. .

. . .
. . .

1
2kK M − 1

2kK
.. .

. . .
. . .

1
2(N−1)K M − 1

2(N−1)K
1

2NK M


,(A.4)

B is the (N + 1)× 1 block column matrix

B =
[
K , 0 , . . . , 0

]T
,(A.5)

D is the q × q identity matrix, and CT is the 1× (N + 1) block row matrix

CT =
[
I0 ,

1
4 I1 , · · · , 1

2

(
1

k+1 − 1
k−1

)
Ik , · · · , − 1

2(N−1) IN

]
,(A.6)
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where Ik is a q × q matrix made up of 1
2q × 1

2q submatrices

Ik =

[
I 0
0 (−1)k+1

I

]
.(A.7)

The right-hand side vectors of this linear system are

F =
[
f0 , f1 , · · · , fN

]T
,(A.8)

G =
[
0
]
.(A.9)

Each of the blocks in these matrices and vectors is q × q. Therefore, (A.3) is a bor-
dered, block tridiagonal system of equations.

By arranging the linear system of equations in this way, we can apply the gen-
eralized deflated block elimination method to solve this system [19]. This algorithm
isolates the block tridiagonal part of this system from its borders, allowing one to
exploit the sparsity. Contributions from the borders, B, CT , and D come about
as corrections to the block tridiagonal system solve. The generalized deflated block
elimination algorithm is

1. solve AW = B,
2. solve Aw = F ,
3. compute S = D − CTW ,
4. solve SY = G− CTw,
5. compute X = w −WY .

In addition, the storage requirements in solving this system using this algorithm is
very small. The diagonal blocks of A are diagonal matrices, and the off-diagonal blocks
of A are all the same modulo a scalar factor. Therefore, only the q× q matrix, K, and
a q× 1 vector containing the diagonal elements of M are necessary to effectively store
the matrix A. Furthermore, since each individual block in CT are scalar multiples of
identity matrices, computing the product of it and some other vector requires very
few operations.

Appendix B. Alternating direction method. Replacing the continuous an-
gular variables µ and φ by a set of discrete quadrature points µi and φj , where
i = 1, . . . , q1 and j = 1, . . . , q2, we find that the semidiscrete spectral approximation
(3.32) in matrix notation is

∂akl(t)

∂t
+

2v

dz
L1Akl(t) +

2v

dx
L2Bkl(t) + vQ[akl](t) = vFkl(t) for k, l = 0, . . . , N,

(B.1)

with

akl(t) = (akl(µ1, φ1, t), akl(µ1, φ2, t), . . . , akl(µ1, φq, t), . . . , akl(µq1 , φq2 , t)) ,
(B.2)

and similar representations for Akl, Bkl, and Fkl. The (q1q2) × (q1q2) diagonal ma-
trices L1 and L2 are defined by

L1 = diag(µ1,
q2times· · · , µ1, µ2,

q2times· · · , µ2, . . . µq1 , . . . , µq1)

L2 = diag(µ1 cosφ1, µ1 cosφ2, . . . , µ1 cosφq2 , . . . µq1 cosφ1, . . . , µq1 cosφq2).
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The Crank–Nicholson time-differencing scheme is given by

(B.3)

[
I +

v∆t

2
Q

]
an+1
kl +M1A

n+1
kl +M2B

n+1
kl

=

[
I − v∆t

2
Q

]
an
kl −M1A

n
kl −M2B

n
kl +

v∆t

2

[
Fn+1

k + Fn
k

]
,

where M1 = v∆tL1/dz and M2 = v∆tL2/dx. The expansion coefficients of the spatial
derivatives Bkl and Akl are related to akl through (3.33). Let us write formally the
inverse relations of (3.33) as Akl = T1akl and Bkl = T2akl so that we can make an
approximate factorization of (B.3)

(B.4)

[
I +

v∆t

4
Q +M1T1

] [
I +

v∆t

4
Q +M2T2

]
an+1
kl

=

[
I − v∆t

4
Q−M1T1

] [
I − v∆t

4
Q−M2T2

]
an
kl +

v∆t

2

[
Fn+1

k + Fn
k

]
.

Observe that all the extra terms introduced in (B.4) are of orderO(∆t2). Furthermore,
the same terms are introduced in the left- and right-hand side. We can conclude that
by subtraction of the extra terms in both sides of the equation, (B.4) is equivalent to
(B.3) up to O(∆t3) (since an+1

kl − an
kl ∼ O(∆t)). Then the two-stage method[

I +
v∆t

4
Q +M1T1

]
a∗
kl =

[
I − v∆t

4
Q−M1T1

]
an
kl +

v∆t

2

[
Fn+1

k + Fn
k

]
,(B.5)[

I +
v∆t

4
Q +M2T2

]
an+1
kl =

[
I − v∆t

4
Q−M2T2

]
a∗
kl(B.6)

solves (B.1). Again using that Akl = T1akl and Bkl = T2akl we obtain the numerical
scheme (3.34).
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