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A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as
its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of
the material and a dimensionless periodic function that restores the translation invariance of the crystal and
influences the Peierls stress. Explicit expressions are given for crystals with cubic symmé&tiyise cubig,
fce, and bee. Numerical simulations of this model with conservative or damped dynamics illustrate static and
moving-edge and screw dislocations, and describe their cores and profiles. Dislocation loops and dipoles are
also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole
formed by two edge dislocations.
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I. INTRODUCTION (x9,—a/2,0) and (xg—a,al/2,0). This large excursion is in-
compatible with the main assumption under which linear
The advances of electronic microscopy allow imaging ofelasticity is derived for a crystal structutéthe deviations of
atoms and can therefore be used to visualize the core d@dns in a crystal lattice from their equilibrium positions are
dislocations}? cracks? and other defects that control crystal small(compared to the interionic distan¢and therefore the
growth and the mechanical, optical, and electronic propertiegnic potentials entering the total potential energy of the
of the resulting materiatsEmerging behavior due to motion crystal are approximately harmonic. One obvious way to de-
and interaction of defects might explain common but poorlyscribe dislocation motion is to simulate the atomic motion
understood phenomena, such as fricfidefects can be cre- with the full ionic potentials. This description is possibly too
ated in a controlled way by ion bombardment on recon-costly. In fact, we know that the atomic displacements are
structed surfaceswhich allows the study of effectively two- small far from the dislocation core and that linear elasticity
dimensional2D) single dislocations and dislocation dipoles. holds there. Is there an intermediate description that allows
These dislocations are effectively 2D because the surfacdislocation motion in a crystal structure and is compatible
“floats” on the three-dimension&D) crystal’ Other defects with a far field described by the corresponding anisotropic
that are very important in multilayer growth are misfit linear elasticity?
dislocations’~10 At the nanoscale, many processésr ex- If we try to harmonize the continuum description of dis-
ample, dislocation emission around nanoindentatioria- locations according to elasticity with a discrete description,
volve the interaction of a few defects so close to each othewhich is simply elasticity with finite differences instead of
that their core structure plays a fundamental role. To under-
stand them, the traditional method of using information

about the far field of the defectextracted from linear elas- 15/ 90000000000900900900000090200 4]
.. . . . . 0000000000000 00000000000000000
fucny) to infer properties of far-apart defects reaches its lim- 990920999000000008000000000000000 F
its. The alternative method afb initio simulations is very 107 358353923823825805838032883583¢8 1
costly and not very practical at the present time. Thus, it 000000000000000000000000000000
would be interesting to have systematic models of defect 5/ 883203923503822582380952958328
motion in crystals that can be solved cheaply, are compatible 02252252250800088080000000000000
h | .. d . |d f I f . b h d f y 0_ OO00OOOOOOOO%OD...:ggOOOOOOOOOOO 4
wit eastICIty,'an yield usefu information about the defect A 36888858388208885$2528288888838
cores and their mobilty. HHHHHHH
To see what these models of defect_s might be like, _it is . §§§§§§§§§§§§§§§§§§§§§§§§§§§ggg
convenient to recall a few facts about dislocations. Consider, 000000000000000000000000000000
; . ; ; ; 10 38080888080000000000000000000666686
for example, an edge dislocation in a simple culsig lattice F220823288338083288839883235833583
W|It(;1 a Burgers Ve'ctorlequal ;[10 one Integonlcbg:t?nce in 15| +88388888885888883888888858888888
gliding motion, as in Fig. 1. The atoms above plane : : : : :
glide over those below. Let us label the atoms by their posi- 15 -10 -5 ?(/a S 10 12

tion before the dislocation moves beyond the origin. Con-

sider the atomsxg, —a/2,0) a_nd(xo,glz,O), which are near- FIG. 1. (Color online Deformed cubic lattice in the presence of
est neighbors before the dislocation passes them. After then edge dislocation for the piecewise linggx) of Eq. (2) with
passage of the dislocation, the nearest-neighbor atoms ase-0.24.

1098-0121/2005/713)/134105%10)/$23.00 134105-1 ©2005 The American Physical Society



A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW B 71, 134105(2009

differentials, we face a second difficulty. The displacement 0.07
vector of a static edge dislocation is multivalued. For ex- 3

ample, its first component ist;=a(27) (tarm(y/x) 0.06
+xy/[2(1-v)(x?+y?)]) for the previously described edge "
dislocation (v is the Poisson ratjdt In elasticity, this fact 0.05} ¢

does not cause any trouble because the physically relevar )
strain tensor contains only derivatives of the displacement  0.04f .

vector. These derivatives are continuous even across th o '
positive x axis, where the displacement vector has a jump ~ 0.03;
discontinuityu; =a. If we consider a discrete model and use A
differences instead of differentials, then the difference of the  0.02f
displacement vector may still have a jump discontinuity = e
across the positive axis. 0.01 kY
The previous difficulties have been solved in a simple ey
discrete model of edge dislocations and crowdions called the 15 02 025 , 03 035 0.4

IAC model (interacting atomic chains modgeproposed and

studied by Landau and collaboratdfsh similar model for FIG. 2. (Color onling Peierls stress in dimensionless units for a

screw_(lj;slocatlons m. bee crystals was proposeq earlier b%D edge dislocation in a sc crystal with the stiffnesses of tungsten
Suzuki:* In the equations for the IAC model, the differences .  function of the parameterin the periodic functiorg(x).

of the displacement vector are replaced by their sines. Unlike

the finite differences, these sine functions are continuous hich o (x) <0 shrinks with hat in whi
across the positivax axis. Moreover, the equations remain which g'(x) shrinks with respect to that in whidyi (x)

unchanged if a horizontal chain of atoms slides an integer’ 9)- The parametes can be selected so as to agree with the
number of lattice periods over another chain. Taking ad- observed or calculated Peierls stress of a given cry_stal.
vantage of its simplicity, we have recently analyzed pinning Second, we replace the strain tensor in the strain energy
and motion of edge dislocations in the IAC modfl. by

In this paper, we propose a top-down approach to discrete 1 . g(Du) +g(D}u)
models of dislocations in cubic crystals. Let us start with a 8 = 5(W§”+W}')) ==l 5 2 (3)
simple cubic lattice having a unit cell of side lengthFirst,
we discretize space along the primitive vectors, defining th&summing the strain energy over all lattice sites, we obtain

unit cell of the crystal:x=x;=la, y=X,=ma, z=%3=Nna,  the potential energy of the crystal
wherel, m, andn are integers. We shall measure the dis-

placement vector in units ofa, so that Ti(x,y,z1) V{u}) =a® > W(l,mn;t). (4)
=ay(l,m,n;t) and u(l,m,n;t) is a nondimensional Lmn

vector. Let Dj+ and D; represent the standard forward and
backward difference operators, so th&@ju(l,m,n;t)
=#[y(I£1,m,n;t)—u;(I,m,n;t)], and so on. We shall define
the discretedistortion tensor as

1
W(I,m,n;t) = W({u;}) = 5Ciik €} &» ©)

Cijki = N6 S + (S Iy + 8 i) + 2(Cpa— 1)

w =g(Dju), 0
. - : : e Swdii + %19k
where g(x) is a periodic function of period 1 satisfying X > — 01j01j01k011 ~ 6262002
g(x) ~x asx— 0. In this paper, we shall use the odd continu-
ous piecewise linear function
P = 83105 53k53|): (6)

1
X X<3-a, in which summation over repeated indices is understood.

g(x) = 1 - 20)(1 - 1 1 (2) Here, A\=Cy,, u=(Cy;—Cy5)/2, whereC;; are the stiffness
w, Soa<x<Z, constants of a cubic crystal. @,,=u, then the strain energy
da 2 is isotropic and\ and . are the usual Lamé coefficients.

Next, we find the equations of motion. In the absence of
dissipation and fluctuation effects, they are

1 V{ud)
adu(l,mn;t)’

which is periodically extended outside the interval
(-1/2,1/2 for a givena, 0<a<1/2. Note thatg(x) is
symmetrical if «=1/4 andthat the interval ofx in which

g’ (x) <0 widens with respect to that in whidi(x) >0 asa
increases. Numerical simulations of the governing equations ]

for a 2D edge dislocation show that the Peierls stress deaf, equivalently,

creases asv increases(see Fig. 2, which will be further P

commented on later on. This means that the dislocation is  MU;(I,mn;t)= - ————— > owdl',m’,n’;t), (8)
harder to move ife decreasesi.e., if the interval ofx in au;(l,m,n;t)

pa’l(l,m,n;t) = -

()

I”m'n’
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M = pa?. (9) anisotropic Navier equations with a singularity ! at the
dislocation core and such th#ig(dx - V)tU=-b, whereb is
the Burgers vector and is any closed curve encircling the
dislocation line'® A pure screw dislocation along tteaxis
with Burgers vectorb=(0,0,b) has a displacement vector
U=[0,0Us(x,y)]*. Then the strain energy densit$) be-
comesW=C,, Vl?/2, and the stationary equation of mo-
M = D Dj_[Cijmg'(D}rUi)g(DrUk)]- (10) tion is Al;=0. Its solution corresponding to a screw disloca-
jk

Here ;= #u,/dt?, M has units of mass per unit lengthe-
causep is the mass densityand the displacement vector is
dimensionless, so that both sides of E§) have units of
force per unit area. We show in the Appendix that E).is
equivalent to the following spatially discrete equations

tion is Us(x,y)=b(27)tam(y/x)!. The same symmetry

) . . . considerations for Eq10) yield the following discrete equa-
To nondimensionalize these equations, we could a8gp&s o for thez component of theondimensionatlisplacement
the typical scale of stress argk=\VM/Cyy=ayp/Cy, as the Us(l, m: 0):
time scale. The resulting equations are the same ones with
M =1 andcij.k,/C44 mstegd OfCijiq - L.et us now restore dimen- Mil; = C,{D3[g(D}us)g’ (D}us)] + D3[g(D3us)g’ (Dius) I}
sional units to this equation, so thafl(x,y,2)
=ay(x/a,y/a,z/a), then leta—0, use Eqg.(9) and that (12)

g(x)~x asx—0. Then we obtain the equations of linear Numerical solutions of Eq(12) show that a static screw

elasticity!® . ; ; ,
dislocation moves if an applied shear stress surpasses the
v 9 T static Peierls stress$f|>F. but that a moving dislocation
T2 > o \Gik ) (11)  continues doing so until the applied shear stress falls below a
jkl 9% |

lower thresholdF.4 (dynamic Peierls stres¢see Ref. 5 for a

Thus, the discrete model with conservative dynamics yield§imilar situation for edge dislocationsTo find the static so-
the Cauchy equations for elastic constants with cubic symlution of this equation corresponding to a screw dislocation,
metry, provided the components of the distortion tensor ar&/€ could minimize an energy functional. However, it is more
very small(which holds in the dislocation far fieldEqua- efficient to solve the following overdamped equation:

tions of motion with dissipation and fluctuation terms can be | ~ N - N . .

obtained by writing a quadratic dissipative function, which, BUs=Cas{D1[9(D1U3)g’(D1U3)] + D;[g(D3u3)g’ (D3ug) 1}

in the isotropic case, yields the usual fluid viscosity terms, (13
and using the fluctuation-dissipation theor&m.

In the rest of the paper, we describe dislocation motion inThe stationary solutions of Eqé&l2) and(13) are the same,
simple cubic crystals and extend our discrete elastic equaut the solutions of13) relax rapidly to the stationary solu-
tions to the case of fcc and bcc lattices. tions if we choose appropriately the damping coefficignt
We solve Eg. (13) with initial condition us(l,m;0)
=U(l,m)=Db(27a) ‘tarr¥(m/I), and with boundary condi-
tionsus(l,m;t)=Us(l,m)+Fm at the upper and lower bound-

In this section, we shall find numerically pure screw andaries of our lattice. At the lateral boundaries, we use zero-
edge dislocations of our discrete model for sc symmetry anflux Neumann boundary conditions. HeFeis an applied
discuss their motion under appropriate applied stresses. In aimensionless stress with| <F.g to obtain the dimensional
cases, the procedure to obtain, numerically, the dislocatiotress we should multipllf by C44. For such small stress, the
from the discrete model equations is the same. We first solveolution of Eq.(13) relaxes to a static screw dislocation
the stationary equations of continuum elasticity with us(l,m) with the desired far field. IF=0, Fig. 3 shows the
appropriate  singular source terms to obtain thehelical structure adopted by the deformed lattitem,n
dimensional displacement vector U(x,y,2 +us(l,m)) for the piecewise lineag(x) of Eq. (2) with «
=[Uy(X,Y,2),Ux(X,Y,2),Us(X,y,2)] of the static dislocation =0.24. The numerical solution shows that moving a disloca-
under zero applied stres§his displacement vector yields tion requires that we should hagg(D}us) <0 (with either
the far field of the corresponding dislocation for the discretej=1 or 2 in (12) or (13) at its core!® This is harder to
model, which is thenondimensionaldisplacement vector: achieve asy decreases.

U(l,m,n)=t(la,ma,na)/a. We use the nondimensional The motion of a pure screw dislocation is somewhat spe-
static displacement vectak(l,m,n) in the boundary and ini- cial because its Burgers vector is parallel to the dislocation
tial conditions for the discrete equations of motion of theline. Any plane containing the Burgers vector can be a glide
discrete model. Later in the section, we shall show numericaplane. Under a shear streBs>F directed along the di-
results corresponding to the interaction of edge dislocationgection, a screw dislocation moves on the glide planeA
and the opening of a crack. moving screw dislocation has the structure of a discrete trav-
eling wave in the directiorx, with far field us(I-ct,m)
+Fm; c=c(F) is the dislocation spee(ee Fig. 4. This is
similar to the case of edge dislocations in the simple IAC

The continuum displacement field of a dislocatidn, model}® as discussed in Ref. 15, where the details of the

=(U,,U,,Ts), can be calculated as a stationary solution of theanalysis can be looked up.

Il. DISLOCATION MOTION IN SC CRYSTALS

A. Screw dislocations

134105-3
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z/a +u (I,m)

AU+

1—2vV(V -U) =-(0,b,0)4(r). (14

Herer=\x?+y? and v=\/[2(\+ )] is the Poisson rati¢cf.
p. 114 of Ref. 16 The appropriate solution is

Y P S
= 277{“"” l(x) T v)(x2+y2)]’

_ b 1-2v  [x2+y? y?
u2:_ - |I’l 2 + 2 2
2w 4(1-v) b 21 -v)(x“+y9)

(15

15 (cf. Ref. 1, p. 57.
10 5 Equations(15) yield the nondimensional static displace-
ysa 10 x/a ment vectorU(l,m)=[U,(la,ma)/a,l,(la,ma)/a, 0], which
will be used to find the stationary edge dislocation of the
FIG. 3. (Color onling Screw dislocation for the piecewise linear discrete equations of motion. For this planar configuration,

g(x) of Eq. (2) with @=0.24. the conservative equations of moti@t0) become
Mii; = C;3D3[g(D1u)g’ (D3uy)] + Cy,D7[g(D3u,)g’ (D3uy)]
B. Edge dislocations + CyD5{[9(D3uy) + g(D1up) 19’ (D3u)}, (16)

To analyze edge dislocations in the simplest case, W& =c..D-[q(Du.)a’(Du.)1+ C..DI[a(Du)a’ (Diu
consider an isotropic cubic crystdlCy=(Cy;—C1,)/2] 2= Cu710(D7U9g’ (Dzu9)] + CzDol0(D11y)g' (Do)

with planar discrete symmetry, so thau(l,m;t) +C4,D1{[9(D1uy) + g(D3uy)]g’ (Diu,)} (17)
=[uy(l,m;t),ux(1,m;t), 0] is independent oz=na To find the stationary edge dislocation corresponding to
To find the stationary edge dislocation of the discretethese equations, we s€,=(C;;—C;,)/2 (isotropic casg

model, we first have to write the corresponding stationaryand replace the inertial terméil; andMil, by Bu, and Bu,,

edge dislocation of isotropic elasticity. An edge diS'Ocationrespecti\/e|y_ The resu|ting Overdamped equations,
directed along the axis (dislocation ling and having Bur-

gers vector (b,0,00 has a displacement vectoi ~ At1=CuDi[g(Diuy)g’ (Diuy)]+ C1,D1[g(D3uz)g’ (Diuy)]

=[Ty(x,y),Ty(X,Yy), 0] with a singularityecr ™ at the core and + CD5{[g(D3uy) + g(Diuy) g’ (Diuy}, (18)
satisfyingf(dx- V)u=-(b,0,0), for any closed curv€ en-

circling the z axis. It satisfies the planar stationary Navier B, = C1iD3[0(DiU)g' (D3u,) ] + CD3[g(Diu) g’ (Diuy) ]
equations with a singular source term - K . .
+CyD1{[9(D1up) + 9(Dup)]g" (D1U,)}, (19

have the same stationary solutions as Ef). and(17). We

2 solve Egs.(18) and (19) with initial condition u(l,m;0)
889 % % ‘z LA %f? %%%zzﬁﬁmﬁi?ﬁg&g =U(l,m) given by Eqgs.(15), and with boundary conditions
’ 848%3 ‘% ®Q® 4 % @ o;g;% %C;;oaf;;m wz@‘;o u(l,m;t)=U(l,m)+(Fm,0,0) at the upper and lower bound-
I i g 3 % ‘?; ® G é? @ %E%Cizoe";mﬁw » % @ aries of the latticéF is a dimensionless applied shear stress;
®e% g (% ! %3;(;0;? o';dg?@(gw mc;%?; recall that the displacement vector in the discrete equations is
ofp ® 2o 3 e e O@‘;o@ % 2% always dimensionlessif |F|<F. (F is the static Peierls
TR Z o® 020;0* 09‘2? % g stress for edge dislocationghe solution of Eqs(18) and
b ¥ 2 5 OB 5 ‘; 0! g f? ?B @ Q‘i (19 relaxes to a static edge dislocatipn(l,m),u,(l,m), 0]
OLW,‘; ° 0o . % %% 33 with the appropriate continuum far field. '
O Goeoo0oS Pl g8 s % & e In our numerical calculations of the static edge disloca-
® 0 e ®® % AL AL %&%g ®%8 8 . A tion, we use the elastic constants of tungstehich is an
3 . . _ =
8 %%O %gog%%%%%%o%%wo ° o P ey * ® ® § 3 isotropic bcc crystal C11=521 GPaC;,=201 GPaCyy
%5 90,80,623060805.04C %%a% ; % % R89e00Ly =160 GPaCy;=C,,+2C,,).2 This yields»=0.278. Figure 5
(o)
%%%%i%{%%%%%%%%%%?%ﬁ%%%%%gg% 289%% . shows the structure adopted by the deformed latfice
O .
%g%?é?é%%g%g%g%g%%%g%ijg%ﬁ@f;@gg%@fg}%fgi ® +uy(I,m),m+uy(l,m)] when »=0.278 for the asymmetric
0%%%%%%%%?5%%%2%%%2%1%2%@ﬁgfo@%@E’;? L& piecewise linear functiog(x) with three different values of
] ® (o) . . . .
226202006090 30 50905020 0 0 LR R P T ¢ ° . The profiles of the displacement vector are shown in Fig.

6 and 7. The glide motion of edge dislocations occurs on the
FIG. 4. (Color online Superimposed zooms of the moving core glide plane defined by their Burgers vector and the disloca-
of a screw dislocation. tion line, and in the direction of the Burgers vector. In our
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to depin a static dislocation, and a moving dislocation propaexpands as increases: fow
teauin Fig. 2). The dislocation core gains more lattice points

and 7a)—-7(c) show that the dislocation core widens one lat-
the variation of the Peierls stress is very sniaéie thepla-
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FIG. 5. (Color online Edge dislocation for the piecewise lineglx) of Eq. (2) with (a) «
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yfa 0
gates provided the applied stress is larger than the dynamigery narrow, as shown in Figs(® and 7a). Figures %b)

Peierls stresésmaller than the static oné® Numerical solu-
tions show that the dimensionless Peierls stress depends ortice point asa sweep the interval 0.26 «<0.29

in Eg. (2) as shown in Fig. 2. As the interval affor which
g’'(x) <0 shrinks(which occurs asx decreases the static

case, a shear stress in the directjowill move the disloca-
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as « increases to 0.32 and beyofef. Figs. 5c), 6(b), and C. Interaction of edge dislocations and crack formation

7(d)]. Thus the size of the dislocation core and the Peierls The reduced 2D modelL6) and (17) can be solved nu-
stress are related to the width of the intervaldbr which  merically to illustrate interaction of edge dislocations. Figure
9'(x)<0 and to the actual value of the slope. As an addig jjjystrates the repulsion of equal-sign edge dislocations,
tional example, the symmetric sine functio(x)  whereas opposite edge dislocations attract each other and
=sin(2mx)/(2m) has wide subintervals of small slope, which form dislocation loops as in Fig. 9 or dislocation dipoles as
produces very low Peierls stresses and an artificially widen Fig. 10. Friction terms affect numerical simulations of the
dislocation core. In Refs. 13,15, this problem was avoided bynodel as follows. As in the case of 1D mod&stoms may
settingu,=0 and changing(Du;) —Diju; and 27g(D3u;)  oscillate far from the core of a moving dislocation when the
:sin(quD’{ul) in (16) and (18). A moving dislocation is a equations of motion are conservative or slightly damped.
discrete traveling wave advancing along thaxis and hav- Large friction (order one coefficienjsreduces the oscilla-

ing far field [u,(I-ct,m)+Fm,u,(I-ct,m)]. The analysis of tions of individual atoms, the instantaneous position of the
depinning and motion of planar edge dislocations followscore of the defect is easier to locate and its movement in the
that explained in Ref. 15 with technical complications due todistorted lattice is easier to follow. Small frictigorder 102

our more complex discrete model. coefficient$ results in dislocation glide combined with oscil-
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lations of the individual atoms. The Figs. 8-10 were ob- ¢ =co T. T T T8 (24)
. . - . rspq ijim tir 'sj Yip fgm*
tained with small friction. See Refs. 18,19 on the impact of ) ) ] )
friction and inertia on 1D wave front profiles. Note that the elastic constants have the same dimensions in

Figure 11 shows the formation of a crack propagating inbpth the orthogonal and the npnorthogonal t_)asis. _To obtain_ a
thex direction under an applied tension in thelirection. In discrete model, we shall consider Fhat th_e dlmenS|onI¢ss dis-
principle, numerically solving the discrete equations of mo-Placement vector; depends on dimensionless coordinates
tion we can find(i) the threshold stress for crack propaga-X that are integersy =u;(I,m,n;t). As in the case of sc
tion, (i) the direction of propagatior(jii) the crack speed, crystals, we replace the distortion tenggradient of the dis-
and (iv) the crack shape. We have not imposed additionaPlacement vector in the nonorthogonal basig a periodic
conditions, such as displacement thresholds for breakinfinction of the corresponding forward differencey
atomic bonds as in the usual spring models for brittle=g(D;u/) [cf. Eq.(2)]. The discretized strain energy density
fracture?02 is

W(l,m,n;t) = %cr’qug(D;’u,’)g(D;u,’)). (25

Ill. ELASTICITY IN A NONORTHOGONAL BASIS . .
The elastic constantg,,, can be calculated in terms of the

A. Equations of motion Voigt stiffness constants for a cubic crystél;;, C,,, and
For fcc or bee crystals, the primitive vectors of the unit C122 Equation(6) yields cijim=Caa(8) 5jm+ dimdij) + C128; oim
cell are not orthogonal. To find a discrete model for these H (610161 Om™* 621 ) 621 Som* 53i53i_53l53m)' where  H
crystals, we should start by writing the strain energy density” 2C44* C12=Cy; measures the anisotropy of the crystal and
in a nonorthogonal vector basig,, a,, as, in terms of the Ed- (24) provides the tensary,, The elastic energy can be
usual orthonormal vector basis, €,, €, determined by the ©Obtained from Eq(25) for W by means of Eqs(4). Then the
cube sides of length. Let x, denote coordinates in the basis €duations of motior(7) are

g and letx’ denote coordinates in the basis Note that the ,

; ; : : . LU 1 IV
x; have dimensions of length while the are dimensionless. p s == Tig Toq >
The matrixT=(a;,a,,83) whose columns are the coordinates Jt IUp

of the current basis vectors in terms of the old orthonorma{yhich, together with Eqs(4) and (25), yield
basis can be used to change coordinates as follows:

&Zu" —11~- ’ ’
X =T, %= Tix . (20 ?zl = Tiq ToaD; [Chirsd’ (D} U g(D2uy)]. (26)
Similarly, the displacement vectors in both basis are relateq_hiS equation becomed0) for orthogonal coordinated=2
y 4

=d,4/a, once we take into account the Einstein convention on

u’ :'|leuj, u=T; Uj', (21) summation over repeated indices(itD).

and partial derivatives obey B. Far field of a dislocation

J I 940

- i [ (22) As in the case of sc crystals studied in Sec. I, we should
24 MK 9% IX; determine the elastic far field of a dislocation under zero
stress to set up the initial and boundary data needed to solve,
numerically, the discrete equations of moti(26). We can
calculate the elastic far field of any straight dislocation fol-
1 au au 1, au;a_ué lowing the method explained in Chapter 13 of the book by
- Eciilm = ! (23 Hirth and Lothé? First, we determine the elastic constants in

an orthonormal coordinate systedj, €, €, with e;=-¢
where the elastic constants are parallel to the dislocation line. The result is

By using these equations, the strain energy den¥ity
=(1/2)ciymeiem can be written as

g _ 2 ,
9%; ¥ 2 Paxg ax;
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3
Ciiki = Cijua ~ HY (SnSnSaSn = GnGjndndin) - (27)
n=1

Here the rows of the orthogonal mat$< (€], €}, €3)" are the
coordinates of the€"’s in the old orthonormal basis

e, &, €;. In these coordinates, the elastic displacement field

u

(u7,u3,us) depends only o] and onx;. The Burgers vector
and the elastic displacement field satigfy=b5=0 andu]
=uy=0 for a pure screw dislocation in an infinite medium.
For a pure edge dislocatiog=0 andu3=0. Second, the
displacement vectafu’,u3,us) is calculated as follows:

(i) Select three rootp,, p,, p3 with positive imaginary

part out of each pair of complex conjugate roots of the poly-

/)

nomial defay(p)]1=0, a(p) =y + (Clyo+ Claaa) P+ ClaP?

(ii) For eachn=1, 2, 3 find an eigenvectd¥,(n) associ-
ated to the zero eigenvalue for the matax(p,).

(i) Solve R&3: ,A(MD(N)=b}, k=1, 2, 3 and
ReS3_ 32 (Clh+ CooPn)AND(N)=0,i=1, 2, 3 for the
imaginary and real parts @(1), D(2), D(3).

(iv) Fork=1, 2, 3,u/=Rd—(1/271)23_,A(n)D(n)In(x;
+ppdy)]

Last, we can calculate the displacement veafon the non-
orthogonal basis; from uy.

C. Discrete models for fcc metals

PHYSICAL REVIEW B 71, 134105(2009
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FIG. 12. (Color online Perfect edge dislocation in a gold lattice

displaying a twofold stacking sequence of planes. Lines locating the
dislocation core are a guide for the eye.

edge dislocation and the screw dislocation obtained as sta-
tionary solutions of mode(26). Due to the boundary condi-
tions we have chosen, their far fields match the correspond-
ing elastic far fields of the dislocationgwvritten in the
nonorthogonal coordinates corresponding to the primitive
cell vectorsay, a,, a3). Dark and light colors are used to

For fcc metals, the nonorthogonal vector basis comprisingrace points placed in different planes in the original lattice.

primitive vectors is

_a

a
a = 5(1,1,(), a >

0,1,D, ag= g(l,o,n. (29)

The equations of motion ar&6) with the corresponding

Note that the planes perpendicular to the Burgers vector in
Fig. 12 have a twofold stacking sequence “dark-light-dark-
light ...” The extra half plane of the edge dislocation consists
of two half planegone dark and one lighin the dark-light-
dark-light... sequence. Movement of this unit dislocation by
glide retains continuity of the dark planes and the light

tra\r;;forr;al?on matrndl':(alt,haz,ag).f ¢ dislocati in th planes across the glide plane, except at the dislocation core
€ shall now analyze the motion ot disiocations in eYvhere the extra half planes termindte.

case of gold. The initial and boundary data for the numerica
simulations are constructed from the far fields of dislocations
in anisotropic elasticity as explained in Sec. Ill B. We have

wheree€] is a unit vector normal to the glide plane agflis
a unit vector parallel to the dislocation line and to the Bur-
gers vector(but directed in the opposite sense

For gold, C,;;=186 GPaC,,=42 GPaC;,=157 GPa,
and H=55 GPa. The lattice constant &=4.08 A, and the FIG. 13.(Color onling Screw dislocation in a gold lattice. Lines
density isp=1.74 g/cm. Figures 12 and 13 show the perfect locating the dislocation core are a guide for the eye.

%efces

ce O

@ _
considered two straight dislocations: the perfect edge dislo- 8 o 5
cation directed along=(-1,1,-2/V6 (with a Burgers vec- 8 ® "
tor, which is one of the translation vectors of the lattice, and g O e 62
therefore glide of the dislocation leaves behind a perfect O © 1
crystaP) and the pure screw dislocation along ol O
=(1,1,0/42. For the perfect edge dislocation, we select 8 % ® o
© ©
p_ (-1,-10 p_ (1719 p_ (1-12
©=—% » &3 » &=7F (29 0o Q@ ® o
which are unit vectors parallel to the Burgers vediorthe © 0 (%gb .O
normal to the glide plan@, and minus the tangent to the o Q g Qb
dislocation line %, respectively. For the pure screw disloca- o Qb S ©
tion, we have o O ® ?.o ®
)
p_ (712 (113, _ (-1,-10 °
elz( 5 82:( = :(T' (30) O % .
%; o
O
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(0800l ¢, ©OCTWI0
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FIG. 14.(Color onling Edge dislocation in an iron lattice. Lines
locating the dislocation core are a guide for the eye.

D. Discrete models for bcc metals

© 0 0 ©
09,09 0080
BadbeRelc

The discrete model for bcc metals is similar to that for fcc
metals explained in Sec. Ill C, but the nonorthogonal vector
basis comprising primitive vectors is now

_a _a _a
a;= 5(1’1'])’ aZ‘E(_ 11D, a= 5(1'_ 1.1. FIG. 15. (Color online Screw dislocation in an iron lattice.

(31) Lines locating the dislocation core are a guide for the eye.
The equations of motion ar€6) with the corresponding specific one-parameter family of periodic functions can be
transformation matrixi =(a;,a,,a3). selected so as to fit the observed or calculated value of the
As in Sec. Ill C, we calculate the elastic displacements ofPeierls stress for the material under study. For simple cubic
an edge and a screw dislocation in iron. For the edge dislosrystals, their equations of motion are derived and solved

cation we select numerically to describe simple screw and edge dislocations.
~ ~ Moreover, we have obtained numerically edge dislocation
"o (l,l,]) "o ( lyol:D "o (11 2v]) . .
&i="75 . &5 . =5 , (32 loops and dipoles, and observed crack generation and growth

by applying a tension in the vertical direction to a dislocation
rdipole. For fcc and bcc metals, the primitive vectors along
which the crystal is translationally invariant are not orthogo-
nal. Similar discrete models and equations of motion are
p_ (51,09 p_ (512,71 p_ =(1,10 found by writing the strain energy density and the equations
=75 &=—5 ., &5, (33 ion i i

of motion in nonorthogonal coordinates. In these later cases,
where€} is the normal to the glide plane aega unit vector ~we have determined numerically stationary edge and screw
parallel to the dislocation line and to the Burgers vector.  dislocations.

For iron, C{;=242 GPaC,,=112 GPaC,,=146.5 GPa,

andH=129 GPa. The lattice constantas2.87 A and the ACKNOWLEDGMENTS

densityp=7.86 g/cm. Figures 14 and 15 show the edge and . .
the screw dislocations obtained as stationary solutions of Ve thankIgnacio Plans for many helpful comments. This

model (26). Their far fields match the corresponding elastic WOk has been supported by the MCyT Grant No. BFM2002-
far fields of the dislocationgwritten in the nonorthogonal 04127-C02 and by the European Union under Grant No.
coordinates corresponding to the primitive cell vectors1PRN-CT-2002-00282.

a;, ay, ag). Dark and light colors are used to trace points

placed initially in different planes perpendicular to the Bur- ~ APPENDIX: DERIVATION OF THE EQUATIONS OF

gers vector. MOTION

which are unit vectors in the directions of the Burgers vecto
b, the normal to the glide plane and the dislocation line
vector, respectively. For the pure screw dislocation,

Firstly, let us note that
IV. CONCLUSIONS
JW _ W aey

We have proposed discrete models describing defects in —(?ui(l,m,n;t) = dey (1, m,n;t)

crystal structures whose continuum limit is the standard lin-

ear anisotropic elasticity. The main ingredients entering the 1 + +
models are the elastic stiffness constants of the material and - ZUjk&ui(I,m,n;t) [9(Dju) +9(Diuy)]
a dimensionless periodic function that restores the translation N

invariance of the crystal and, together with the elastic con- - }U. g'(D*u) J(Dj )

stants, determines the Peierls stress. The parameter value of a 2"k P 0ui(1,mn; t)
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9(Du)

+g/(D;uj)ﬁui(l,m,n;t) ' (A1)

whereW is a function of the pointl’,m’,n’), and we have
used the definition of stress tensor

_aw
a(-}” '
and its symmetryg;; =oj;. Now, we have

Ju(.m n_t)[DIUk(I’,m’,n’ D1= 81 dir+1= 617) S S
[ASE R L]

(A.3)

and similar expressions fgr2, 3. By using/A.1)—(A.3), we
obtain

PHYSICAL REVIEW B 71, 134105(2009

J ’ I Al ) — T A .
MI,’En, W(I",m',n";t) = ;Dj [oljg (DJ U|)]-
(A.4)

In this expression, no sum is intended over the subsicrgm

that we have abandoned the Einstein convention and explic-
itly included a sum ovej. Therefore, Eq(8) for conserva-
tive dynamics becomes

M :E_ Djloyg' (Diw)l, (A.5)
j

which yields Eq.(10). Except for the factog’(Dfui), these
equations are discretized versions of the usual ones in
elasticity!®
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