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A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as
its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of
the material and a dimensionless periodic function that restores the translation invariance of the crystal and
influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: scssimple cubicd,
fcc, and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and
moving-edge and screw dislocations, and describe their cores and profiles. Dislocation loops and dipoles are
also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole
formed by two edge dislocations.
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I. INTRODUCTION

The advances of electronic microscopy allow imaging of
atoms and can therefore be used to visualize the core of
dislocations,1,2 cracks,3 and other defects that control crystal
growth and the mechanical, optical, and electronic properties
of the resulting materials.4 Emerging behavior due to motion
and interaction of defects might explain common but poorly
understood phenomena, such as friction.5 Defects can be cre-
ated in a controlled way by ion bombardment on recon-
structed surfaces,6 which allows the study of effectively two-
dimensionals2Dd single dislocations and dislocation dipoles.
These dislocations are effectively 2D because the surface
“floats” on the three-dimensionals3Dd crystal.7 Other defects
that are very important in multilayer growth are misfit
dislocations.8–10 At the nanoscale, many processessfor ex-
ample, dislocation emission around nanoindentations11d in-
volve the interaction of a few defects so close to each other
that their core structure plays a fundamental role. To under-
stand them, the traditional method of using information
about the far field of the defectssextracted from linear elas-
ticityd to infer properties of far-apart defects reaches its lim-
its. The alternative method ofab initio simulations is very
costly and not very practical at the present time. Thus, it
would be interesting to have systematic models of defect
motion in crystals that can be solved cheaply, are compatible
with elasticity, and yield useful information about the defect
cores and their mobility.

To see what these models of defects might be like, it is
convenient to recall a few facts about dislocations. Consider,
for example, an edge dislocation in a simple cubicsscd lattice
with a Burgers vector equal to one interionic distance in
gliding motion, as in Fig. 1. The atoms above thexz plane
glide over those below. Let us label the atoms by their posi-
tion before the dislocation moves beyond the origin. Con-
sider the atomssx0,−a/2 ,0d andsx0,a/2 ,0d, which are near-
est neighbors before the dislocation passes them. After the
passage of the dislocation, the nearest-neighbor atoms are

sx0,−a/2 ,0d and sx0−a,a/2 ,0d. This large excursion is in-
compatible with the main assumption under which linear
elasticity is derived for a crystal structure:12 the deviations of
ions in a crystal lattice from their equilibrium positions are
small scompared to the interionic distanced, and therefore the
ionic potentials entering the total potential energy of the
crystal are approximately harmonic. One obvious way to de-
scribe dislocation motion is to simulate the atomic motion
with the full ionic potentials. This description is possibly too
costly. In fact, we know that the atomic displacements are
small far from the dislocation core and that linear elasticity
holds there. Is there an intermediate description that allows
dislocation motion in a crystal structure and is compatible
with a far field described by the corresponding anisotropic
linear elasticity?

If we try to harmonize the continuum description of dis-
locations according to elasticity with a discrete description,
which is simply elasticity with finite differences instead of

FIG. 1. sColor onlined Deformed cubic lattice in the presence of
an edge dislocation for the piecewise lineargsxd of Eq. s2d with
a=0.24.
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differentials, we face a second difficulty. The displacement
vector of a static edge dislocation is multivalued. For ex-
ample, its first component isũ1=as2pd−1(tan−1sy/xd
+xy/ f2s1−ndsx2+y2dg) for the previously described edge
dislocation sn is the Poisson ratiod.1 In elasticity, this fact
does not cause any trouble because the physically relevant
strain tensor contains only derivatives of the displacement
vector. These derivatives are continuous even across the
positive x axis, where the displacement vector has a jump
discontinuityu1=a. If we consider a discrete model and use
differences instead of differentials, then the difference of the
displacement vector may still have a jump discontinuity
across the positivex axis.

The previous difficulties have been solved in a simple
discrete model of edge dislocations and crowdions called the
IAC model sinteracting atomic chains modeld, proposed and
studied by Landau and collaborators.13 A similar model for
screw dislocations in bcc crystals was proposed earlier by
Suzuki.14 In the equations for the IAC model, the differences
of the displacement vector are replaced by their sines. Unlike
the finite differences, these sine functions are continuous
across the positivex axis. Moreover, the equations remain
unchanged if a horizontal chain of atoms slides an integer
number of lattice periodsa over another chain. Taking ad-
vantage of its simplicity, we have recently analyzed pinning
and motion of edge dislocations in the IAC model.15

In this paper, we propose a top-down approach to discrete
models of dislocations in cubic crystals. Let us start with a
simple cubic lattice having a unit cell of side lengtha. First,
we discretize space along the primitive vectors, defining the
unit cell of the crystal: x=x1= la , y=x2=ma, z=x3=na,
where l , m, and n are integers. We shall measure the dis-
placement vector in units ofa, so that ũisx,y,z,td
=auisl ,m,n; td and uisl ,m,n; td is a nondimensional
vector. LetDj

+ and Dj
− represent the standard forward and

backward difference operators, so thatD1
±uisl ,m,n; td

= ± fuisl ±1,m,n; td−uisl ,m,n; tdg, and so on. We shall define
the discretedistortion tensor as

wi
s jd = gsDj

+uid, s1d

where gsxd is a periodic function of period 1 satisfying
gsxd,x asx→0. In this paper, we shall use the odd continu-
ous piecewise linear function

gsxd =5x, uxu ,
1

2
− a,

s1 − 2ads1 − 2xd
4a

,
1

2
− a , x ,

1

2
,6 s2d

which is periodically extended outside the interval
s−1/2,1/2d for a given a , 0,a,1/2. Note thatgsxd is
symmetrical if a=1/4 andthat the interval ofx in which
g8sxd,0 widens with respect to that in whichg8sxd.0 asa
increases. Numerical simulations of the governing equations
for a 2D edge dislocation show that the Peierls stress de-
creases asa increasesssee Fig. 2d, which will be further
commented on later on. This means that the dislocation is
harder to move ifa decreasessi.e., if the interval ofx in

which g8sxd,0 shrinks with respect to that in whichg8sxd
.0d. The parametera can be selected so as to agree with the
observed or calculated Peierls stress of a given crystal.

Second, we replace the strain tensor in the strain energy
by

eij =
1

2
swi

s jd + wj
sidd =

gsDj
+uid + gsDi

+ujd
2

. s3d

Summing the strain energy over all lattice sites, we obtain
the potential energy of the crystal

Vshuijd = a3 o
l,m,n

Wsl,m,n;td. s4d

Wsl,m,n;td = Wshuijd =
1

2
cijkleijekl, s5d

cijkl = ldi jdkl + msdikd jl + dild jkd + 2sC44 − md

3 Sdikd jl + dild jk

2
− d1id1jd1kd1l − d2id2jd2kd2l

− d3id3jd3kd3lD , s6d

in which summation over repeated indices is understood.
Here, l=C12, m=sC11−C12d /2, whereCij are the stiffness
constants of a cubic crystal. IfC44=m, then the strain energy
is isotropic andl andm are the usual Lamé coefficients.

Next, we find the equations of motion. In the absence of
dissipation and fluctuation effects, they are

ra4üisl,m,n;td = −
1

a

]Vshukjd
]uisl,m,n;td

, s7d

or, equivalently,

Müisl,m,n;td = −
]

]uisl,m,n;td o
l8,m8,n8

Wsl8,m8,n8;td, s8d

FIG. 2. sColor onlined Peierls stress in dimensionless units for a
2D edge dislocation in a sc crystal with the stiffnesses of tungsten
as a function of the parametera in the periodic functiongsxd.
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M = ra2. s9d

Here üi ;]2ui /]t2, M has units of mass per unit lengthsbe-
causer is the mass densityd, and the displacement vector is
dimensionless, so that both sides of Eq.s8d have units of
force per unit area. We show in the Appendix that Eq.s8d is
equivalent to the following spatially discrete equations

Müi = o
j ,k,l

Dj
−fcijklg8sDj

+uidgsDl
+ukdg. s10d

To nondimensionalize these equations, we could adoptC44 as
the typical scale of stress andt0=ÎM /C44=aÎr /C44 as the
time scale. The resulting equations are the same ones with
M =1 andcijkl /C44 instead ofcijkl . Let us now restore dimen-
sional units to this equation, so thatũisx,y,zd
=auisx/a,y/a,z/ad, then let a→0, use Eq.s9d and that
gsxd,x as x→0. Then we obtain the equations of linear
elasticity,16

r
]2ũi

]t2
= o

j ,k,l

]

]xj
Scijkl

]ũk

]xl
D . s11d

Thus, the discrete model with conservative dynamics yields
the Cauchy equations for elastic constants with cubic sym-
metry, provided the components of the distortion tensor are
very small swhich holds in the dislocation far fieldd. Equa-
tions of motion with dissipation and fluctuation terms can be
obtained by writing a quadratic dissipative function, which,
in the isotropic case, yields the usual fluid viscosity terms,
and using the fluctuation-dissipation theorem.17

In the rest of the paper, we describe dislocation motion in
simple cubic crystals and extend our discrete elastic equa-
tions to the case of fcc and bcc lattices.

II. DISLOCATION MOTION IN SC CRYSTALS

In this section, we shall find numerically pure screw and
edge dislocations of our discrete model for sc symmetry and
discuss their motion under appropriate applied stresses. In all
cases, the procedure to obtain, numerically, the dislocation
from the discrete model equations is the same. We first solve
the stationary equations of continuum elasticity with
appropriate singular source terms to obtain the
dimensional displacement vector ũsx,y,zd
=fũ1sx,y,zd ,ũ2sx,y,zd ,ũ3sx,y,zdg of the static dislocation
under zero applied stress. This displacement vector yields
the far field of the corresponding dislocation for the discrete
model, which is thenondimensionaldisplacement vector:
Usl ,m,nd= ũsla ,ma,nad /a. We use the nondimensional
static displacement vectorUsl ,m,nd in the boundary and ini-
tial conditions for the discrete equations of motion of the
discrete model. Later in the section, we shall show numerical
results corresponding to the interaction of edge dislocations
and the opening of a crack.

A. Screw dislocations

The continuum displacement field of a dislocation,ũ
=sũ1,ũ2,ũ3d, can be calculated as a stationary solution of the

anisotropic Navier equations with a singularity~r−1 at the
dislocation core and such thateCsdx ·¹ dũ=−b, whereb is
the Burgers vector andC is any closed curve encircling the
dislocation line.16 A pure screw dislocation along thez axis
with Burgers vectorb=s0,0,bd has a displacement vector
ũ=f0,0,ũ3sx,ydg1. Then the strain energy densitys5d be-
comesW=C44u¹ ũ3u2/2, and the stationary equation of mo-
tion is Dũ3=0. Its solution corresponding to a screw disloca-
tion is ũ3sx,yd=bs2pd−1tan−1sy/xd1. The same symmetry
considerations for Eq.s10d yield the following discrete equa-
tion for thez component of thenondimensionaldisplacement
u3sl ,m; td:

Mü3 = C44hD1
−fgsD1

+u3dg8sD1
+u3dg + D2

−fgsD2
+u3dg8sD2

+u3dgj.

s12d

Numerical solutions of Eq.s12d show that a static screw
dislocation moves if an applied shear stress surpasses the
static Peierls stress,uFu.Fcs, but that a moving dislocation
continues doing so until the applied shear stress falls below a
lower thresholdFcd sdynamic Peierls stressd ssee Ref. 5 for a
similar situation for edge dislocationsd. To find the static so-
lution of this equation corresponding to a screw dislocation,
we could minimize an energy functional. However, it is more
efficient to solve the following overdamped equation:

bu̇3 = C44hD1
−fgsD1

+u3dg8sD1
+u3dg + D2

−fgsD2
+u3dg8sD2

+u3dgj.

s13d

The stationary solutions of Eqs.s12d and s13d are the same,
but the solutions ofs13d relax rapidly to the stationary solu-
tions if we choose appropriately the damping coefficientb.
We solve Eq. s13d with initial condition u3sl ,m;0d
=U3sl ,md;bs2pad−1tan−1sm/ ld, and with boundary condi-
tionsu3sl ,m; td=U3sl ,md+Fm at the upper and lower bound-
aries of our lattice. At the lateral boundaries, we use zero-
flux Neumann boundary conditions. HereF is an applied
dimensionless stress withuFu,Fcs; to obtain the dimensional
stress we should multiplyF by C44. For such small stress, the
solution of Eq. s13d relaxes to a static screw dislocation
u3sl ,md with the desired far field. IfF=0, Fig. 3 shows the
helical structure adopted by the deformed latticesl ,m,n
+u3sl ,mdd for the piecewise lineargsxd of Eq. s2d with a
=0.24. The numerical solution shows that moving a disloca-
tion requires that we should haveg8sDj

+u3d,0 swith either
j =1 or 2d in s12d or s13d at its core.15 This is harder to
achieve asa decreases.

The motion of a pure screw dislocation is somewhat spe-
cial because its Burgers vector is parallel to the dislocation
line. Any plane containing the Burgers vector can be a glide
plane. Under a shear stressF.Fcs directed along they di-
rection, a screw dislocation moves on the glide planexz. A
moving screw dislocation has the structure of a discrete trav-
eling wave in the directionx, with far field u3sl −ct,md
+Fm; c=csFd is the dislocation speedssee Fig. 4d. This is
similar to the case of edge dislocations in the simple IAC
model,13 as discussed in Ref. 15, where the details of the
analysis can be looked up.
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B. Edge dislocations

To analyze edge dislocations in the simplest case, we
consider an isotropic cubic crystalfC44=sC11−C12d /2g
with planar discrete symmetry, so thatusl ,m; td
=fu1sl ,m; td ,u2sl ,m; td ,0g is independent ofz=na.

To find the stationary edge dislocation of the discrete
model, we first have to write the corresponding stationary
edge dislocation of isotropic elasticity. An edge dislocation
directed along thez axis sdislocation lined and having Bur-
gers vector sb,0 ,0d has a displacement vectorũ
=fũ1sx,yd ,ũ2sx,yd ,0g with a singularity~r−1 at the core and
satisfyingeCsdx ·¹ dũ=−sb,0 ,0d, for any closed curveC en-
circling the z axis. It satisfies the planar stationary Navier
equations with a singular source term

Dũ +
1

1 − 2n
¹ s¹ · ũd = − s0,b,0ddsrd. s14d

Herer =Îx2+y2 andn=l / f2sl+mdg is the Poisson ratioscf.
p. 114 of Ref. 16d. The appropriate solution is

ũ1 =
b

2p
Ftan−1Sy

x
D +

xy

2s1 − ndsx2 + y2dG ,

ũ2 =
b

2p
F−

1 − 2n

4s1 − nd
lnSx2 + y2

b2 D +
y2

2s1 − ndsx2 + y2dG
s15d

scf. Ref. 1, p. 57d.
Equationss15d yield the nondimensional static displace-

ment vectorUsl ,md=fũ1sla ,mad /a,ũ2sla ,mad /a,0g, which
will be used to find the stationary edge dislocation of the
discrete equations of motion. For this planar configuration,
the conservative equations of motions10d become

Mü1 = C11D1
−fgsD1

+u1dg8sD1
+u1dg + C12D1

−fgsD2
+u2dg8sD1

+u1dg

+ C44D2
−hfgsD2

+u1d + gsD1
+u2dgg8sD2

+u1dj, s16d

Mü2 = C11D2
−fgsD2

+u2dg8sD2
+u2dg + C12D2

−fgsD1
+u1dg8sD2

+u2dg

+ C44D1
−hfgsD1

+u2d + gsD2
+u1dgg8sD1

+u2dj. s17d

To find the stationary edge dislocation corresponding to
these equations, we setC44=sC11−C12d /2 sisotropic cased,
and replace the inertial termsMü1 andMü2 by bu̇1 andbu̇2,
respectively. The resulting overdamped equations,

bu̇1 = C11D1
−fgsD1

+u1dg8sD1
+u1dg + C12D1

−fgsD2
+u2dg8sD1

+u1dg

+ C44D2
−hfgsD2

+u1d + gsD1
+u2dgg8sD2

+u1dj, s18d

bu̇2 = C11D2
−fgsD2

+u2dg8sD2
+u2dg + C12D2

−fgsD1
+u1dg8sD2

+u2dg

+ C44D1
−hfgsD1

+u2d + gsD2
+u1dgg8sD1

+u2dj, s19d

have the same stationary solutions as Eqs.s16d ands17d. We
solve Eqs.s18d and s19d with initial condition usl ,m;0d
=Usl ,md given by Eqs.s15d, and with boundary conditions
usl ,m; td=Usl ,md+sFm,0 ,0d at the upper and lower bound-
aries of the latticesF is a dimensionless applied shear stress;
recall that the displacement vector in the discrete equations is
always dimensionlessd. If uFu,Fcs sFcs is the static Peierls
stress for edge dislocationsd, the solution of Eqs.s18d and
s19d relaxes to a static edge dislocationfu1sl ,md ,u2sl ,md ,0g
with the appropriate continuum far field.

In our numerical calculations of the static edge disloca-
tion, we use the elastic constants of tungstenswhich is an
isotropic bcc crystald, C11=521 GPa,C12=201 GPa,C44
=160 GPasC11=C12+2C44d.2 This yieldsn=0.278. Figure 5
shows the structure adopted by the deformed latticefl
+u1sl ,md ,m+u2sl ,mdg when n=0.278 for the asymmetric
piecewise linear functiongsxd with three different values of
a. The profiles of the displacement vector are shown in Fig.
6 and 7. The glide motion of edge dislocations occurs on the
glide plane defined by their Burgers vector and the disloca-
tion line, and in the direction of the Burgers vector. In our

FIG. 3. sColor onlined Screw dislocation for the piecewise linear
gsxd of Eq. s2d with a=0.24.

FIG. 4. sColor onlined Superimposed zooms of the moving core
of a screw dislocation.
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case, a shear stress in the directiony will move the disloca-
tion in the directionx. For conservative or damped dynamics,
the applied shear stress has to surpass the static Peierls stress
to depin a static dislocation, and a moving dislocation propa-
gates provided the applied stress is larger than the dynamic
Peierls stressssmaller than the static oned.15 Numerical solu-
tions show that the dimensionless Peierls stress depends ona
in Eq. s2d as shown in Fig. 2. As the interval ofx for which
g8sxd,0 shrinks swhich occurs asa decreasesd, the static

Peierls stress increases and the dislocation becomes harder to
move. The size of the dislocation core is also related to the
shape ofgsxd. As shown by Figs. 5–7, the dislocation core
expands asa increases: foraø0.26, the dislocation core is
very narrow, as shown in Figs. 5sad and 7sad. Figures 5sbd
and 7sad–7scd show that the dislocation core widens one lat-
tice point asa sweep the interval 0.26,a,0.29, in which
the variation of the Peierls stress is very smallssee thepla-
teauin Fig. 2d. The dislocation core gains more lattice points

FIG. 5. sColor onlined Edge dislocation for the piecewise lineargsxd of Eq. s2d with sad a=0.27,sbd a=0.29, andscd a=0.32.

FIG. 6. sColor onlined Profile
of u1sl ,md for an edge dislocation
with the piecewise lineargsxd of
Eq. s2d when sad a=0.24 andsbd
a=0.32.

FIG. 7. sColor onlined Profile
of u2sl ,md for an edge dislocation
with the piecewise lineargsxd of
Eq. s2d when sad a=0.24, sbd a
=0.27, scd a=0.29, and sdd a
=0.32.
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as a increases to 0.32 and beyondfcf. Figs. 5scd, 6sbd, and
7sddg. Thus the size of the dislocation core and the Peierls
stress are related to the width of the interval ofx for which
g8sxd,0 and to the actual value of the slope. As an addi-
tional example, the symmetric sine functiongsxd
=sins2pxd / s2pd has wide subintervals of small slope, which
produces very low Peierls stresses and an artificially wide
dislocation core. In Refs. 13,15, this problem was avoided by
settingu2=0 and changinggsD1

+u1d↔D1
+u1 and 2pgsD2

+u1d
=sins2pD1

+u1d in s16d and s18d. A moving dislocation is a
discrete traveling wave advancing along thex axis and hav-
ing far field fu1sl −ct,md+Fm,u2sl −ct,mdg. The analysis of
depinning and motion of planar edge dislocations follows
that explained in Ref. 15 with technical complications due to
our more complex discrete model.

C. Interaction of edge dislocations and crack formation

The reduced 2D models16d and s17d can be solved nu-
merically to illustrate interaction of edge dislocations. Figure
8 illustrates the repulsion of equal-sign edge dislocations,
whereas opposite edge dislocations attract each other and
form dislocation loops as in Fig. 9 or dislocation dipoles as
in Fig. 10. Friction terms affect numerical simulations of the
model as follows. As in the case of 1D models,18 atoms may
oscillate far from the core of a moving dislocation when the
equations of motion are conservative or slightly damped.
Large friction sorder one coefficientsd reduces the oscilla-
tions of individual atoms, the instantaneous position of the
core of the defect is easier to locate and its movement in the
distorted lattice is easier to follow. Small frictionsorder 10−2

coefficientsd results in dislocation glide combined with oscil-

FIG. 8. sColor onlined Repul-
sion of like-sign edge
dislocations.

FIG. 9. sColor onlined Attrac-
tion of opposite-sign edge disloca-
tions leading to formation of a dis-
location loop.

FIG. 10. sColor onlined Attrac-
tion of opposite-sign edge disloca-
tions leading to formation of a dis-
location dipole.

A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW B 71, 134105s2005d

134105-6



lations of the individual atoms. The Figs. 8–10 were ob-
tained with small friction. See Refs. 18,19 on the impact of
friction and inertia on 1D wave front profiles.

Figure 11 shows the formation of a crack propagating in
thex direction under an applied tension in they direction. In
principle, numerically solving the discrete equations of mo-
tion we can findsid the threshold stress for crack propaga-
tion, sii d the direction of propagation,siii d the crack speed,
and sivd the crack shape. We have not imposed additional
conditions, such as displacement thresholds for breaking
atomic bonds as in the usual spring models for brittle
fracture.20,21

III. ELASTICITY IN A NONORTHOGONAL BASIS

A. Equations of motion

For fcc or bcc crystals, the primitive vectors of the unit
cell are not orthogonal. To find a discrete model for these
crystals, we should start by writing the strain energy density
in a nonorthogonal vector basis,a1, a2, a3, in terms of the
usual orthonormal vector basise1, e2, e3, determined by the
cube sides of lengtha. Let xi denote coordinates in the basis
ei and letxi8 denote coordinates in the basisai. Note that the
xi have dimensions of length while thexi8 are dimensionless.
The matrixT=sa1,a2,a3d whose columns are the coordinates
of the current basis vectors in terms of the old orthonormal
basis can be used to change coordinates as follows:

xi8 = Tij
−1xj, xi = Tijxj8. s20d

Similarly, the displacement vectors in both basis are related
by

ui8 = Tij
−1uj, ui = Tijuj8, s21d

and partial derivatives obey

]

]xi8
= Tji

]

]xj
,

]

]xi
= Tji

−1 ]

]xj8
. s22d

By using these equations, the strain energy densityW
=s1/2dciklmeikelm can be written as

W=
1

2
cijlm

]ui

]xj

]ul

]xm
=

1

2
crspq8

]ur8

]xs8

]up8

]xq8
, s23d

where the elastic constants are

crspq8 = cijlmTirTsj
−1TlpTqm

−1 . s24d

Note that the elastic constants have the same dimensions in
both the orthogonal and the nonorthogonal basis. To obtain a
discrete model, we shall consider that the dimensionless dis-
placement vectorui8 depends on dimensionless coordinates
xi8 that are integersui8=ui8sl ,m,n; td. As in the case of sc
crystals, we replace the distortion tensorsgradient of the dis-
placement vector in the nonorthogonal basisd by a periodic
function of the corresponding forward difference,wi

s jd

=gsDj
+ui8d fcf. Eq. s2dg. The discretized strain energy density

is

Wsl,m,n;td = 1
2crspq8 gsDs

+ur8dgsDq
+up8d. s25d

The elastic constantscrspq8 can be calculated in terms of the
Voigt stiffness constants for a cubic crystal,C11, C44, and
C12. Equations6d yields cijlm =C44sdild jm+dimdl jd+C12di jdlm

−Hsd1id1jd1ld1m+d2id2jd2ld2m+d3id3jd3ld3md, where H
=2C44+C12−C11 measures the anisotropy of the crystal and
Eq. s24d provides the tensorcrspq8 . The elastic energy can be
obtained from Eq.s25d for W by means of Eqs.s4d. Then the
equations of motions7d are

ra3]2ui8

]t2
= − Tiq

−1Tpq
−1 ]V

]up8
,

which, together with Eqs.s4d and s25d, yield

r
]2ui8

]t2
= Tiq

−1Tpq
−1Dj

−fcpjrs8 g8sDj
+up8dgsDs

+ur8dg. s26d

This equation becomess10d for orthogonal coordinates,Tiq
−1

=diq /a, once we take into account the Einstein convention on
summation over repeated indices ins10d.

B. Far field of a dislocation

As in the case of sc crystals studied in Sec. II, we should
determine the elastic far field of a dislocation under zero
stress to set up the initial and boundary data needed to solve,
numerically, the discrete equations of motions26d. We can
calculate the elastic far field of any straight dislocation fol-
lowing the method explained in Chapter 13 of the book by
Hirth and Lothe.2 First, we determine the elastic constants in
an orthonormal coordinate systeme19 , e29 , e39, with e39=−j
parallel to the dislocation line. The result is

FIG. 11. sColor onlined Snap-
shots showing crack generation
and growth induced by applying a
tension in the directiony to a dis-
location dipole.
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cijkl9 = cijkl − Ho
n=1

3

sSinSjnSknSln − dind jndkndlnd. s27d

Here the rows of the orthogonal matrixS=se19 ,e29 ,e39d
t are the

coordinates of theei9’s in the old orthonormal basis
e1, e2, e3. In these coordinates, the elastic displacement field
su19 ,u29 ,u39d depends only onx19 and onx29. The Burgers vector
and the elastic displacement field satisfyb19=b29=0 and u19
=u29=0 for a pure screw dislocation in an infinite medium.
For a pure edge dislocation,b39=0 and u39=0. Second, the
displacement vectorsu19 ,u29 ,u39d is calculated as follows:

sid Select three rootsp1, p2, p3 with positive imaginary
part out of each pair of complex conjugate roots of the poly-
nomial detfaikspdg=0, aikspd=ci1k19 +sci1k29 +ci2k19 dp+ci2k29 p2.

sii d For eachn=1, 2, 3 find an eigenvectorAksnd associ-
ated to the zero eigenvalue for the matrixaikspnd.

siii d Solve Reon=1
3 AksndDsnd=bk9 , k=1, 2, 3 and

Reon=1
3 ok=1

3 sci2k19 +ci2k29 pndAksndDsnd=0, i =1, 2, 3 for the
imaginary and real parts ofDs1d , Ds2d , Ds3d.

sivd For k=1, 2, 3, uk9=Ref−s1/2pidon=1
3 AksndDsndlnsx19

+pnx29dg.
Last, we can calculate the displacement vectoruk8 in the non-
orthogonal basisai from uk9.

C. Discrete models for fcc metals

For fcc metals, the nonorthogonal vector basis comprising
primitive vectors is

a1 =
a

2
s1,1,0d, a2 =

a

2
s0,1,1d, a3 =

a

2
s1,0,1d. s28d

The equations of motion ares26d with the corresponding
transformation matrixT=sa1,a2,a3d.

We shall now analyze the motion of dislocations in the
case of gold. The initial and boundary data for the numerical
simulations are constructed from the far fields of dislocations
in anisotropic elasticity as explained in Sec. III B. We have
considered two straight dislocations: the perfect edge dislo-
cation directed alongj=s−1,1,−2d /Î6 swith a Burgers vec-
tor, which is one of the translation vectors of the lattice, and
therefore glide of the dislocation leaves behind a perfect
crystal9d and the pure screw dislocation alongj
=s1,1,0d /Î2. For the perfect edge dislocation, we select

e19 =
s−1,−1,0d

Î2
, e29 =

s1,−1,−1d
Î3

, e39 =
s1,−1,2d

Î6
, s29d

which are unit vectors parallel to the Burgers vectorb, the
normal to the glide planen, and minus the tangent to the
dislocation line −j, respectively. For the pure screw disloca-
tion, we have

e19 =
s1,−1,2d

Î6
, e29 =

s−1,1,1d
Î3

, e39 =
s−1,−1,0d

Î2
, s30d

wheree29 is a unit vector normal to the glide plane ande39 is
a unit vector parallel to the dislocation line and to the Bur-
gers vectorsbut directed in the opposite sensed.

For gold, C11=186 GPa,C44=42 GPa,C12=157 GPa,
and H=55 GPa. The lattice constant isa=4.08 Å, and the
density isr=1.74 g/cm3. Figures 12 and 13 show the perfect

edge dislocation and the screw dislocation obtained as sta-
tionary solutions of models26d. Due to the boundary condi-
tions we have chosen, their far fields match the correspond-
ing elastic far fields of the dislocationsswritten in the
nonorthogonal coordinates corresponding to the primitive
cell vectorsa1, a2, a3d. Dark and light colors are used to
trace points placed in different planes in the original lattice.
Note that the planes perpendicular to the Burgers vector in
Fig. 12 have a twofold stacking sequence “dark-light-dark-
light …” The extra half plane of the edge dislocation consists
of two half planessone dark and one lightd in the dark-light-
dark-light… sequence. Movement of this unit dislocation by
glide retains continuity of the dark planes and the light
planes across the glide plane, except at the dislocation core
where the extra half planes terminate.9

FIG. 12. sColor onlined Perfect edge dislocation in a gold lattice
displaying a twofold stacking sequence of planes. Lines locating the
dislocation core are a guide for the eye.

FIG. 13. sColor onlined Screw dislocation in a gold lattice. Lines
locating the dislocation core are a guide for the eye.
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D. Discrete models for bcc metals

The discrete model for bcc metals is similar to that for fcc
metals explained in Sec. III C, but the nonorthogonal vector
basis comprising primitive vectors is now

a1 =
a

2
s1,1,1d, a2 =

a

2
s− 1,1,1d, a3 =

a

2
s1,− 1,1d.

s31d

The equations of motion ares26d with the corresponding
transformation matrixT=sa1,a2,a3d.

As in Sec. III C, we calculate the elastic displacements of
an edge and a screw dislocation in iron. For the edge dislo-
cation we select

e19 =
s1,1,1d

Î3
, e29 =

s−1,0,1d
Î2

, e39 =
s1,−2,1d

Î6
, s32d

which are unit vectors in the directions of the Burgers vector
b, the normal to the glide planen and the dislocation line
vector, respectively. For the pure screw dislocation,

e19 =
s−1,0,1d

Î2
, e29 =

s−1,2,−1d
Î6

, e39 =
−s1,1,1d

Î3
, s33d

wheree29 is the normal to the glide plane ande39 a unit vector
parallel to the dislocation line and to the Burgers vector.

For iron, C11=242 GPa,C44=112 GPa,C12=146.5 GPa,
and H=129 GPa. The lattice constant isa=2.87 Å and the
densityr=7.86 g/cm3. Figures 14 and 15 show the edge and
the screw dislocations obtained as stationary solutions of
model s26d. Their far fields match the corresponding elastic
far fields of the dislocationsswritten in the nonorthogonal
coordinates corresponding to the primitive cell vectors
a1, a2, a3d. Dark and light colors are used to trace points
placed initially in different planes perpendicular to the Bur-
gers vector.

IV. CONCLUSIONS

We have proposed discrete models describing defects in
crystal structures whose continuum limit is the standard lin-
ear anisotropic elasticity. The main ingredients entering the
models are the elastic stiffness constants of the material and
a dimensionless periodic function that restores the translation
invariance of the crystal and, together with the elastic con-
stants, determines the Peierls stress. The parameter value of a

specific one-parameter family of periodic functions can be
selected so as to fit the observed or calculated value of the
Peierls stress for the material under study. For simple cubic
crystals, their equations of motion are derived and solved
numerically to describe simple screw and edge dislocations.
Moreover, we have obtained numerically edge dislocation
loops and dipoles, and observed crack generation and growth
by applying a tension in the vertical direction to a dislocation
dipole. For fcc and bcc metals, the primitive vectors along
which the crystal is translationally invariant are not orthogo-
nal. Similar discrete models and equations of motion are
found by writing the strain energy density and the equations
of motion in nonorthogonal coordinates. In these later cases,
we have determined numerically stationary edge and screw
dislocations.
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APPENDIX: DERIVATION OF THE EQUATIONS OF
MOTION

Firstly, let us note that

]W

]uisl,m,n;td
=

]W

]ejk

]ejk

]uisl,m,n;td

=
1

2
s jk

]

]uisl,m,n;td
fgsDj

+ukd + gsDk
+ujdg

=
1

2
s jkFg8sDj

+ukd
]sDj

+ukd
]uisl,m,n;td

FIG. 14. sColor onlined Edge dislocation in an iron lattice. Lines
locating the dislocation core are a guide for the eye.

FIG. 15. sColor onlined Screw dislocation in an iron lattice.
Lines locating the dislocation core are a guide for the eye.
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+ g8sDk
+ujd

]sDk
+ujd

]uisl,m,n;tdG , sA.1d

whereW is a function of the pointsl8 ,m8 ,n8d, and we have
used the definition of stress tensor

si j =
]W

]eij
, sA.2d

and its symmetry,si j =s ji . Now, we have

]

]uisl,m,n;td
fD1

+uksl8,m8,n8;tdg = diksdll8+1 − dll8ddmm8dnn8,

sA.3d

and similar expressions forj =2, 3. By usingsA.1d–sA.3d, we
obtain

]

]uisl,m,n;td o
l8,m8,n8

Wsl8,m8,n8;td = − o
j

Dj
−fsi jg8sDj

+uidg.

sA.4d

In this expression, no sum is intended over the subscripti, so
that we have abandoned the Einstein convention and explic-
itly included a sum overj . Therefore, Eq.s8d for conserva-
tive dynamics becomes

Müi = o
j

Dj
−fsi jg8sDj

+uidg, sA.5d

which yields Eq.s10d. Except for the factorg8sDj
+uid, these

equations are discretized versions of the usual ones in
elasticity.16
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