Seminars 2009
Seminarios del Instituto Gregorio Millán
Viernes 4 de diciembre de 2009
Monte Carlo simulations of (quasi) constrained
ensembles
Víctor Martín-Mayor
Universidad Complutense de Madrid
Abstract
The standard Monte Carlo simulation of systems
displaing metastability is very inefficient. The
standard example is that of first-order phase
transitions, but metastibility hampers the simulation
of many complex systems (spin glasses, structural
glasses, lattice polymers,...). One may use constrained
statistical ensembles in order to guide the simulation
inside those rare but crucial regions were it does not
want to get into. Typical implementations of this idea,
such as Multicanonical or Wang-Landau simulations,
require the system to perform a one-dimensional in the
so-called reaction coordinate space. This random-walk
is strongly non-Markovian, and does suffer from
exponential critical slowing down. Here we propose a
different approache. We combine a generalization of
Lustig's microcanonical Monte Carlo, with a
fluctuation-dissipation formalism. Thermodynamic
integration allows for an accurate reconstruction of
the effective potential. Cluster algorithms work fine
within this framework. This strategy outperforms
random-walks methods in the simulation of disordered
systems. The presented work has been (mostly) performed
in collaboration [1-5].
[1] V. Martín-Mayor, Phys. Rev. Lett. 98,
137207 (2007).
[2] L.A. Fernández, A. Gordillo-Guerrero, V.
Martín-Mayor, J.J. Ruíz-Lorenzo, Phys. Rev. Lett.
100, 057201 (2008).
[3] L.A. Fernández, V. Martín-Mayor and D. Yllanes,
Nucl. Phys. B 807, 424 (2009); Erratum:
ibid. B 818, 212 (2009).
[4] V. Martín-Mayor, D. Yllanes, Phys. Rev. E
80, 015701(R) (2009).
[5] L.A. Fernández, V. Martín-Mayor, B. Seoane, P.
Verrocchio, arXiv:0910.4924.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 18 de noviembre de 2009
Bifurcation in the Echebarría-Karma modulation equation
for cardiac arrhythmias
David G. Schaeffer
Duke University
Abstract
Alternans, the simplest cardiac arrhythmia, is
considered to be a precursor of fibrillation, possibly
leading to sudden cardiac death. This term refers to
behavior in which, under uniform periodic pacing, the
response of the heart alternates between short and long
action potentials. Moreover, in extended tissue, the
phase of the short-long alternation varies with both
position and time. The full mathematical description of
these phenomena via reaction-diffusion PDE is difficult
to analyze. A more tractable approximation-the
Echebarría-Karma modulation equation-captures the
dynamics at least qualitatively. Solutions of this
equation are vulnerable to both steady and
time-dependent instabilities. This lecture will focus
on the bifurcation phenomena that result from the
interaction of these two instabilities.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 7 de octubre de 2009
An invitation to collaborate: One-dimensional models
for cardiac arrhythmias
David G. Schaeffer
Duke University
Abstract
In electrocardiology, the term action potential refers
to the behavior that, in response to a brief stimulus,
the electrical potential across cardiac cell walls is
elevated for an extended period. The duration of action
potentials under periodic pacing is an important
quantity clinically, physiologically, and
mathematically. At slow to moderate pacing rates, every
stimulus produces an action potential of the same
duration, but at high pacing rates cardiac tissue often
undergoes a bifurcation to what is called
alternans: i.e., uniform APD's are replaced by
an alternation between short and long action
potentials. In a single cell or a small piece of
cardiac tissue, this bifurcation is a familiar
period-doubling bifurcation, but when propagation
effects are important the nature of the bifurcation to
alternans is far from clear, even in problems with just
one space dimension. For example, the short/long
alternation may suffer phase reversals at various
locations in the tissue. This behavior, known as
discordant alternans, is considered to be a
precursor to ventricular fibrillation.
Mathematically, these phenomena are governed by a
system of reaction-diffusion equations. Echebarria and
Karma proposed greatly simplified description of them,
a modulation equation for a single unknown.
Qualitatively, the bifurcations of the modulation
equation match those of the full system, but
quantitatively the discrepancies are rather
significant. In the lecture I will summarize the
general context and propose some specific problems.
These problems are directed towards understanding the
behavior of solutions of the full system of
reaction-diffusion equations, if possible building on
the framework provided by the modulation equation. I
hope others may find these problems attractive; I am
eager to discuss them.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 24 de junio de 2009
Photoexcited superlattices as constrained excitable
media: Motion of dipole domains and current
self-oscillations
José Ignacio Arana
Grupo de Modelización, Simulación Numérica y Matemática
Industrial (UC3M)
Abstract
Vertical electronic transport in undoped, photoexcited
and voltage biased
Al xGa 1-xAs/GaAs superlattices is
investigated on the basis of a spatially-discrete
sequential-resonant-tunneling model governed by
differential-difference equations. The recombination,
drift velocity and diffusion coefficients are
calculated numerically as functions of the electric
field according to the overlap of the electron wave
functions and microscopic scattering process.
At constant current bias and depending on the laser
intensity, the model equations resemble those of the
FitzHugh-Nagumo (FHN) model of nerve conduction.
Depending on parameter values, the dynamics may be
excitable or oscillatory, and wave fronts, pulses and
wave trains are among attractors. Asymptotic
approximations of these different waves need to go one
order beyond those develop for the spatially discrete
FHN model in order to agree with the numerical
simulations. There are other waves, pulses moving
against the electron flow, which are qualitatively
different from the FHN ones.
Under dc voltage bias our system may have excitable or
oscillatory dynamics but such dynamics is constrained
by the requirement that the area under the electric
field should be a constant. For large enough voltage,
there may appear self-sustained oscillations of the
current due to charge dipole waves which are pulses of
the electric field. Besides self-oscillations of
Gunn-type due to dipole creation at the injector, there
are novel oscillations due to repeated homogeneous
nucleation of opposite-moving dipole pairs inside the
sample. Some of these oscillations are weakly chaotic
as they have a positive Lyapunov exponent.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Jueves 18 de junio de 2009
Transient laminar opposing mixed convection in a
differentially and asymmetrically heated vertical
channel of finite length
César Treviño
Universidad Nacional Autónoma de México
Abstract
In this talk, the transient laminar mixed convection in
an differentially heated finite length vertical channel
subject to an opposing buoyancy is investigated by
solving the unsteady two-dimensional Navier-Stokes and
energy equations. Results are particularly presented to
illustrate the effects of buoyancy strength or
Richardson and Reynolds numbers on the overall flow
structure and the nondimensional heat flux (Nusselt
number) from the heated surface. Final steady or
oscillatory flow response is obtained, depending on the
Reynolds and Richardson numbers. The critical value of
the buoyancy strength between the two regimes strongly
depends on the value of the Reynolds number. The effect
of the heat losses to the channel walls is also studied
in this work. For relatively large values of the
Richardson number, for a given Reynolds number,
numerical results show that by increasing the heat
losses to the channel walls, the flow structure changes
from a multi-spectral flow response to an harmonic flow
with a well defined oscillation frequency. The results
for the cases of asymmetric and symmetric heating are
presented.
El Seminario tendrá lugar a las 15:00 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 17 de junio de 2009
Modelos Matemáticos de la Actividad Eléctrica Cardiaca
Felipe Alonso Atienza
Universidad Rey Juan Carlos
Abstract
Basados en la conjunción de ideas e hipótesis de campos
diversos de la ciencia, tales como la biofísica, la
ingeniería, las matemáticas y la cardiología, los
modelos electrofisiológicos tienen como objetivo
fundamental emular y de este modo analizar de forma
controlada el comportamiento eléctrico del tejido
cardiaco. Desde el trabajo pionero de los británicos
Alan L. Hodking y Andrew F. Huxley en 1952, muchas
aportaciones se han hecho en el campo del modelado.
Actualmente se cuenta con modelos que describen los
procesos electrofisiológicos involucrados en la
generación y propagación del impulso eléctrico en el
miocardio a distintas escalas espaciales, en respuesta
a necesidades de investigación distintas. A nivel
microscópico se tienen modelos de de canales iónicos y
células aisladas. A nivel macroscópico existen modelos
de tejidos e incluso de órganos. Así, es posible
estudiar, por ejemplo, los efectos de mutaciones
hereditarias tanto a nivel celular como a nivel de
órganos, generando consecuentemente conclusiones a
niveles distintos. En este seminario se describen
brevemente los distintos modelos matemáticos que
describen la actividad eléctrica cardiaca desarrollados
por la comunidad científica siguiendo una perspectiva
histórica, haciendo especial hincapié en las
aportaciones del autor en este campo.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 10 de junio de 2009
Perturbaciones hidrodinámicas detrás de ondas de choque
corrugadas
Juan Gustavo Wouchuk
E.T.S.I.Industriales (U.C.L.M. Ciudad Real)
Abstract
Se presenta un breve panorama de los flujos
hidrodinámicos que se generan detrás de ondas de choque
y rarefacción ligeramente corrugadas. Dichos flujos son
habituales en situaciones donde se entrega energía de
forma rápida y concentrada de forma tal que la materia
pueda considerarse en estado fluido. En tales
experimentos es habitual la generación de fuertes ondas
de compresión u ondas de choque y la materia puede
alcanzar condiciones extremas de densidad, presión y
temperatura [1,2,3]. La compresibilidad del medio
resulta ser un ingrediente importante a la hora de
modelar los flujos resultantes.
Las ondas de choque generadas tendrán por lo general,
perturbaciones de forma y los flujos hidrodinámicos
correspondientes distan mucho de poder describirse con
modelos unidimensionales.
Dichas situaciones se dan naturalmente en diversos
contextos: explosión de supernovas, experimentos en
tubos de choque y en los experimentos de Fusión por
Confinamiento Inercial (FCI) [2,3]. En los experimentos
de FCI cobra particular importancia la denominada
inestabilidad de Richtmyer-Meshkov [4,5], de la que se
dará una brevísima pincelada. Se analizará brevemente
el state of the art de los flujos relacionados
con la inestabilidad de Richtmyer-Meshkov.
[1] L. D. Landau, and E. M. Lifshitz, ``Fluid
Mechanics'' (Pergamon Press, New York, 1987).
[2] Ya. B. Zeldovich, and Yu. P. Raizer, ``Physics of
Shock Waves and High-Temperature Hydrodynamic
Phenomena'' (Dover, New York, 1966).
[3] R.P. Drake, ``High Energy Density Physics:
Fundamentals, Inertial Fusion and Experimental
Astrophysics'' (Springer, New York, 2006).
[4] A.L. Velikovich et al., Phys. Plasmas
7, 1662 (2000).
[5] A.L. Velikovich et al., Phys. Plasmas
14, 072706 (2007).
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 3 de junio de 2009
Kinetic theory and hydrodynamics of Bloch oscillations
in nanostructures
Luis L. Bonilla
Instituto Gregorio Millán (UC3M)
Abstract
Bloch oscillations (BO) are coherent oscillations of
the electron position inside energy bands of a crystal
under an applied constant electric field. Their
frequency is proportional to the field $F$ and to the
lattice constant $\ell$: $\omega_B = e F \ell/\hbar$.
Zener (1934) was the first to predict BO, which are an
immediate consequence of the Bloch theorem in quantum
mechanics. Electron scattering (with phonons,
impurities, etc.) damps BO very rapidly for natural
crystals, and damped BO were not observed until 1992
(in semiconductor superlattices, SL [1]). Since then,
damped BO have been measured in many other artificial
periodic structures such as ultracold atoms [2] or
Bose-Einstein condensates [3] in optical lattices, BO
of photons in optical waveguides [4], etc. Besides
their interest for theoretical physics, BO have
attracted great attention because of their potential
for designing infrared detectors, emitters or lasers
which can be tuned in the Terahertz frequency range
simply by varying the applied electric field [5].
In dc voltage biased semiconductor SL, there are stable
self-sustained current oscillations in the Gigahertz
range due to a periodic nucleation of electric field
pulses in the injector contact and their motion towards
the collector [6]. This Gunn-type instability is
believed to be responsible for destroying the BO
although no one has produced a calculation to prove
this belief true. Part of the problem is that BO
disappear in the hydrodynamic regime of the usual
Boltzmann-type kinetic theory for electronic transport
in SL. Recently, we have proposed a Boltzmann-Poisson-
BGK model with inelastic collisions for electron
transport in one-dimensional SL. Using novel singular
perturbation theory, this model allows us to derive a
hydrodynamic regime of coupled equations for the slow
envelope of the Bloch oscillations, the electron
density and the electric field. For small oscillation
amplitudes, a convective complex evolution equation for
the amplitude provides a criterion for damping or
sustainability of Bloch oscillations. Future work may
explore the question of how to get a gain under
appropriate ac+dc voltage bias.
[1] J. Feldmann et al., Phys. Rev. B
46, 7252 (1992).
[2] M. Ben Dahan et al., Phys. Rev. Lett.
76, 4508 (1996).
[3] M. Greiner et al., Applied Physics B:
Lasers & Optics, 73, 769 (2001).
[4] T. Pertsch et al., Phys. Rev. Lett.
83, 4752 (1999).
[5] K. Leo, ``High-field transport in semiconductor
superlattices'' Springer Tracts in Modern Physics
187 (Springer, Berlin 2003).
[6] L.L. Bonilla and H.T. Grahn, Rep. Prog. Phys.
68, 577 (2005).
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 27 de mayo de 2009
Non-ergodicity in Wang-Swenden-Kotecky Monte Carlo
dynamics
Jesús Salas
Instituto Gregorio Millán (UC3M)
Abstract
Markov Chain Monte Carlo simulations have become a very
important tool to investigate critical phenomena in
Statistical Mechanics and Lattice Field Theory. Indeed,
we should require some properties to the algorithm in
order to ensure that it converges to the desired
probability distribution. The main goal of this talk is
to show that the well-known Wang-Swensden-Kotecky (WSK)
algorithm for the 4-state Potts antiferromagnet at zero
temperature on a triangular lattice with periodic
boundary conditions is not ergodic (and hence, it is
not a legal algorithm). I will introduce all background
concepts (e.g., the q-state Potts model, Markov Chain
Monte Carlo algorithms, and the WSK algorithm) before
sketching the main ideas leading to the proof of my
claim.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 20 de mayo de 2009
Numerical simulations for the Early Universe
Margarita García Pérez
Instituto de Física Teórica (UAM/CSIC)
Abstract
Real-time numerical simulations are required to deal
with the out-of-equilibrium strongly coupled processes
taking place in the early Universe. In this talk I will
review the numerical approach and some of the results
obtained in this context. As a case example, I will
focus on discussing a recent proposal for the
generation of primordial helical magnetic fields that
could give rise to the large scale microgauss fields
observed today in galaxies and clusters of galaxies.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 13 de mayo de 2009
Phantom traffic jams and jamitons: On self substaining
traffic shocks
Rodolfo Rubén Rosales
Department of Mathematics (MIT)
Abstract
We find and an analogy between continuum models for
traffic flow and reacting gas dynamics, and exploit it
to obtain a theory for fully developed phantom jams in
roadways. Phantom traffic jams arise without any
apparent cause in many roadways when the traffic
density is high enough. In the context of inviscid
second order continuum models for traffic flows, this
phenomena has been associated with a (linear)
instability of the uniform density solution. We show
that, under these circumnstances, the instability
saturates into a self-sustaining upstream traveling
wave with an embeddeed shock: the jamiton. These waves
are mathematically analogous to Chapman-Jouguet
Detonations (CJD) in reacting gas dynamics, which
consist of a shock with an attached exothermic reaction
zone, isolated from the rest of the flow by a sonic
point (event-horizon). Consistent with recent
experimental observations from a periodic roadway
(Sugiyama et al. New Journal of Physics, 10, 2008),
numerical calculations show that these nonlinear
traveling waves are attracting solutions, with the time
evolution of the system converging towards a jamiton
dominated configuration.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 6 de mayo de 2009
Una breve historia de los agujeros negros: de las
estrellas oscuras a las Teorías de Supercuerdas
Tomás Ortín
Instituto de Física Teórica (UAM/CSIC)
Abstract
En esta charla repasaré desde un punto de vista
pedagógico la historia del concepto de agujero negro a
través de las teorías fundamentales de la Física desde
la Física Newtoniana a las Teorías de Supercuerdas.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Martes 5 de mayo de 2009
Análisis de la no convexidad y aproximación numérica de
las ecuaciones de la magnetohidrodinámica compresible
Susana Serna
University of California Los Angeles y Universidad
Autónoma de Barcelona
Abstract
Las ecuaciones de la magnetohidrodinámica (MHD)
compresible forman un sistema no estrictamente
hiperbólico de leyes de conservación. La complejidad de
la dinámica de ondas de la MHD compresible en
comparación con la de las ecuaciones de la
hidrodinámica de Euler radica en la presencia del campo
magnético que genera nuevas ondas magnéticas y
magnetoacústicas. La rotación del campo magnético
induce el carácter no estrictamente hiperbólico del
sistema de ecuaciones de la MHD y la no linealidad no
genuina (no convexidad) de algunos campos
característicos locales. En este trabajo presentamos un
estudio analítico de la estructura de ondas del sistema
de ecuaciones de la MHD compresible basado en la
descomposición local en campos característicos.
Proponemos una descomposición espectral apropiada de
los flujos que permite establecer un criterio explícito
para detectar puntos de no convexidad. Finalmente
formulamos un esquema numérico de captura de ondas de
choque basado en la descomposición local en campos
característicos propuesta y presentamos ejemplos
numéricos en una y dos dimensiones.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 29 de abril de 2009
Transmisión extraordinaria de ondas a través de láminas
perforadas
Luis Martín
Departamento de Física de la Materia Condensada (U.
Zaragoza)
Abstract
En 1998 Ebbesen y colaboradores encontraron que la
transmisión de luz a través de redes periódicas de
agujeros diminutos (menores que la longitud de onda de
la luz incidente), perforados en un metal, podía ser
órdenes de magnitud mayores que si los agujeros
estuvieran aislados. Este descubrimiento ha sido fuente
de numerosas investigaciones (efecto del tipo de metal,
de la red, la posibilidad de fenómenos similares en
agujeros aislados, etc.). En este seminario se
resumirán dichos estudios y se presentarán los
mecanismos básicos que dan lugar a la transmisión
extraordinaria. El conocimiento de estos mecanismos
permite la transferencia de este efecto a otros
regímenes del espectro electromagnético e incluso a
otros tipos de ondas.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Lunes 20 de abril de 2009
Rate-dependent Avalanche Size in Athermally Sheared
Amorphous Solids
Anael Lemaitre
Institut Navier (France)
Abstract
Considerable efforts have been spent in recent years to
derive constitutive laws for plasticity in amorphous
media from a realistic description of the elementary
mechanisms of dissipation. It is now agreed that in
these disordered systems, plasticity involves "shear
transformations", i.e. irreversible rearrangements (or
flips) of small clusters of (a few tens of) particles.
By analogy with Eshelby transformations, each flip can
alter the strain field in its surroundings, hence
generate long-range elastic fields. Flips can thus
trigger further flips, a mechanism likely to give rise
to avalanches. Yet, theories still diverge on the
importance to grant to flip-flip correlations.
Avalanches were first seen in numerical simulation of
athermal systems, but only in the quasi-static limit
(at vanishing strain rate), and the question remained
outstanding whether they are relevant to experimentally
accessible regimes of plastic deformation. After a
quick review of quasi-static results, we will see how
finite size studies of transverse diffusion under shear
at finite strain rate provide evidence that indeed
avalanche behavior should always be prevalent under
experimental conditions.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 15 de abril de 2009
Spin dynamics in Quantum Dots under dc and ac magnetic
fields
Gloria Platero
Instituto de Ciencia de Materiales de Madrid (CSIC)
Abstract
In the last years a large number of experiments has
been devoted to the analysis of the electronic current
through double quantum dots (DQD's) in the spin
blockade (SB) regime. Hyperfine interaction in DQD's
releases spin blockade allowing the flux of current and
inducing nuclei spin polarization. This interaction
gives rise to a feedback mechanism between the spins of
the electrons and nuclei, which dynamically modifies
the electronic charge occupation and the energy of the
electronic levels. In this talk, we propose a model
which accounts for hyperfine interaction, as the main
spin-flip source, and which allows to obtain the nuclei
spin dynamical polarization and its interplay with the
electron spin dynamics. We will show how this interplay
brings the current to perform self-sustained current
oscillations, as experimentally observed. We have
considered molecular states as the basis and, from non
linear rate equations for the electronic charge
occupations and nuclei spin polarization, we obtain the
non linear electronic current and dynamical nuclear
polarization. As we will discuss, there are different
spin flip processes which induce nuclear spin
polarization with opposite polarization. We have
analyzed their interplay and we have calculated the
tunneling current as a function of time, effective
exchange interaction (interdot tunneling) and magnetic
field.
The second part of this talk will be devoted to analyze
spin dynamics in double and triple dots under crossed
dc and ac magnetic fields. Recent transport experiments
in DQD's under crossed dc and ac magnetic fields show
coherent spin rotations of one single electron spin. We
will discuss the electron spin dynamics in this
configuration and we will extend this analysis to
triple quantum dots (TQD's). TQDs in linear o
triangular configuration have been investigated, both
experimentally and theoretically. TQDs have been
proposed as solid-state-entanglers or charging
rectifiers.They also motivate fundamental research,
because their electronic properties present a rich
variety of physical phenomena as spin blockade or
electron spin resonance (ESR). Also, TQD's in
triangular configuration present Aharonov-Bohm (AB)
oscillations. We have analyzed the interplay between
AB-phase and coherent spin rotations induced by crossed
DC and AC fields in TQD in triangular configuration,
filled with up to three extra electrons. We investigate
different configurations, i.e. equal or different
Zeeman splittings within the three dots. We discuss how
coherent population trapping, which occurs in TQD's
filled with one electron, is affected by the AC field.
The presence of a second extra electron leads to new
interesting features in the spin dynamics due to the
interplay between spin blockade, AB-interference and
coherent spin rotations induced by the AC magnetic
field. Current through the system can be blocked either
by coherent population trapping or by spin blockade. We
will discuss how ESR modifies the spin dynamics in both
cases and how it depends on the magnetic flux through
the sample induced by the dc field. Finally, we predict
that, for certain sample configurations, bichromatic
magnetic fields are able to induce electron coherent
trapping in the TQD. Our results indicate that not only
electron spin coherence but also electron spin
rectification properties in transport can
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Lunes 16 de marzo de 2009
Equations for step bunch formation in the morphological
evolution of nano-scale crystal surface structures
below the roughening transition
Rodolfo Rubén Rosales
Department of Mathematics (MIT)
Abstract
We derive ``Lagrangian'' coordinates continuum
equations for the surface evolution, obtained as a
limit from a nano-scale description of the dynamics
(``discrete'' step-interaction equations). At the
nano-scale, below roughening, the crystal surface
consists of arbitrarily shaped, interacting steps that
move by diffusion of point defects (adatoms) on
terraces; and attachment and detachment of adatoms at
steps. The cases of diffusion-limited (DL) kinetics,
attachment-detachment limited (ADL) kinetics, and mixed
DL+ADL kinetics are considered, with the restriction of
axial symmetry in the surface.
The standard (``Eulerian'') continuum description fails
when step bunching (where a relatively large number of
steps coalesce to form ``bunches'' of very closely
packed steps) occurs. A numerical investigation of the
continuum Lagrangian equations for the ADL case shows
that they capture step bunching - where the bunches
appear as the product of the interaction between a
(destabilizing) negative diffusion (arising from
step-line tension effects) and a stabilizing fourth
order nonlinear diffusion (arising from the step-step
interactions). The local dynamics within each bunch can
be described by a (relatively) simple equation -
resembling, in some sense, the Kuramoto-Sivashinski
equation - combining these two effects.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Viernes 13 de marzo de 2009
Optical injection and dynamics of charge and spin
current in quantum wells
Eugene Sherman
Departamento de Química Física (UPV)
Abstract
Optical manipulation of currents and spins is of a
great interest for modern spintronics. We begin with
the presentation of optical techniques based on the
interference of one- and two-photon processes for the
current injection in bulk semiconductors and
semiconductor structures. Then, we analyze transverse
and lateral evolution of optically injected currents in
multiple quantum well structures using a hydrodynamic
model. The dynamics is very complex even on time scales
of the order of one picosecond due to the interplay of
Coulomb forces, electron-hole drag effects, and
nonlinearity of the equations of motion. The spin
currents arising due to the spin-orbit coupling and
skew scattering of electrons by holes will be
discussed.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 4 de marzo de 2009
Los modos de Klebanoff en la capa límite de Blasius
José M. Vega
E.T.S.I. Aeronáuticos (UPM)
Abstract
La capa límite de Blasius es la que aparece en una
placa plana paralela a una corriente uniforme de fluido
incompresible. Es la configuración de capa límite más
sencilla posible y tiene los ingredientes esenciales
para estudiar fenómenos de gran interés industrial,
como la transición a turbulencia en flujos alrededor de
alas de aeronaves comerciales, que produce un aumento
brutal de la resistencia de fricción. Los modos de
Klebanoff (K) son, en cierto modo, los naturales de la
capa límite porque oscilan rápidamente en la dirección
transversal a la corriente, pero lentamente en la
dirección de la corriente, como sucede con la solución
estacionaria. Por tanto, a diferencia de los modos de
Tollmien-Schlichting (TS), que oscilan rápidamente en
la dirección de la corriente, pueden calcularse
mediante ecuaciones linealizadas independientes del
número de Reynolds. Aunque son los modos TS los
responsables directos de la transición a turbulencia,
los modos K no deben ignorarse porque pueden o bien
promover el crecimiento de los modos TS (transición
bypass) o inhibirlo, dependiendo de la amplitud. El
interés matemático de los modos K proviene de que (a)
conllevan crecimiento transitorio (transient growth),
lo que hace sutil su propia definición como modos; y
(b) su descripción numérica es complicada en las
cercanías del borde de ataque, donde su comportamiento
es singular. Sin embargo, un análisis cuidadoso de la
estructura matemática de los modos K pone de manifiesto
que pueden describirse y calcularse de modo
relativamente sencillo y que tienen estructura modal,
en contra de la creencia generalizada a día de hoy. Así
se evitan descripciones de estos modos mediante
problemas de optimización relativamente artificiales y
se da un paso hacia desentrañar el mecanismo de
interacción de modos que parece estar en el origen de
la transición a turbulencia en capas límite.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 25 de febrero de 2009
La entropía de los agujeros negros en gravedad cuántica
de lazos
Fernando Barbero
Instituto de Estructura de la Materia (CSIC)
Abstract
El seminario se concentrará en describir el cálculo de
la entropía de los agujeros negros en gravedad cuántica
de lazos mediante técnicas basadas en teoría de números
y combinatoria. Mostraré, en particular, cómo es
posible obtener expresiones exactas, en función del
área, mediante transformadas de Laplace. Para ello
mostraré diversos métodos basados tanto en la
resolución de ecuaciones de recurrencia como en el uso
de funciones generatrices. Terminaré mostrando que la
estructura analítica del integrando de la transformada
de Laplace inversa que da la entropía presenta
características peculiares que permiten esperar que su
comportamiento asintótico explique los resultados
obtenidos recientemente sobre la cuantización efectiva
de la entropía para agujeros negros microscópicos.
El Seminario tendrá lugar a las 12:30 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
Seminarios del Instituto Gregorio Millán
Miércoles 18 de febrero de 2009
Propiedades electrónicas del grafeno
José González
Instituto de Estructura de la Materia (CSIC)
Abstract
Pasaremos revista a las propiedades electrónicas no
convencionales que surgen en grafeno del comportamiento
de las cuasipartículas como fermiones de Dirac sin
masa. Discutiremos la dependencia lineal de la
conductividad con el dopado, la cuantización anómala de
la conductividad Hall y los efectos del desorden en la
hoja de grafeno. Prestaremos atención también a las
propiedades del sistema estadístico de muchos cuerpos,
con el propósito de identificar los efectos más
importantes de la interacción electrónica.
El Seminario tendrá lugar a las 15:00 horas en la Sala
2.1.D04 (Edificio Sabatini) Universidad Carlos III
|